United States Patent 9

US005239624A

(11] Patent Number: 5,239,624

Cook et al. (451 Date of Patent: Aug. 24, 1993
[54] PSEUDO-RANDOM POINT SAMPLING 4,590,465 5/1986 Fuchs .vcrvcricerecccsrnnnne 340/729 X
TECHNIQUES IN COMPUTER GRAPHICS 4,591,844 5/1986 Hickin et al ... 340/728
4,609,917 9/1986 Shen 340/747 X
[75] Inventors: Robert L. Cook, San Anselmo; 4,677,576 6/1987 Berlin, Jr. et al. . 340/723 X
Thomas K. Porter, Fairfax; Loren C. 4,679,040 7/1987 Yan 3407728 X
Carpenter, Novato, all of Calif. 4,780,711 10/1988 Doumas 340/728
. . . 5,025,400 6/1991 Cook et al.ccevrercencrnnnn 364/522
[73] Assignee: Pixar, Richmond, Calif.
Primary Examiner—Heather R. Herndon
[21] Appl. No.: 687,475 Attorney, Agent, or Firm—Hecker & Harriman
[22] Filed: Apr. 17, 1991 {571 ABSTRACT
Related U.S. Application Data A computer database contains visual and other informa-
tion of an object scene from which a television monitor
[63] Sontgng;;i%o of Sle:_r.th. 379,5(:}, Jl:{l. 21,f1§89, l;;ﬁt. or film display is created by electronically sampling
0. J5,025,40, which 15 a continuation of Ser. NO. naoints of the object scene information in the computer
746,626, Jun. 15, 1985, Pat. No. 4,897,806. memory. Undesirable effects of aliasing are significantly
[51] Imt.Cls ... GO9G 1/06; GO9IG 1/16 reduced and substantially eliminated by pseudo-ran-
[52] US.CL wcoooieriecreaanns 395/125; 340/725; domly distributing, in a particular manner, the occur-

(58]

(56]

340/728; 340/729; 395/126; 395/128; 395/131;
395/132; 395/152

Field of Search 364/518, 521, 522;
340/725, 728, 729, 747; 395/125, 126, 128, 131,
132, 152, 155, 161

References Cited
U.S. PATENT DOCUMENTS
T912,012 7/1973 Appel et al.couvrnnnne 340/729 X

rence of the point samples in space and time. Realistic
depth of field is obtained in the images, corresponding
to what is observed through a camera lens, by altering
the sample point locations to simulate passing them
through an optical aperture in a pseudo-random distri-
bution thereacross. Further, effects of illumination,
shadows, object reflection and object refraction are
made more realistic by causing each sample point to
pseudo-randomly select one of a predetermined number

3,441,789 4/1969 Harrison, III couvevveorrsconern. 340/729 Of possible ray directions.
4205389 5/1980 Heartz 364/521 X
4,475,104 10/1984 SHen woovoroorororrroreeron 364/521 X 1 Claim, 3 Drawing Sheets
19 '<5 (25
D/ISK AMam cer
Aaraey ARy
21
I
) SRAME
BUFFER J
23
AHUM
A&y Boaro cPY W TR
27"

)

U.S. Patent Aug. 24, 1993 Sheet 1 of 3 5,239,624
L
19 IS j 23
({ C
DISK Aans
Aaraey ARy | cer
2
I S
) SRamE
BFFER J
23
AHUM
AEyBoaeD 7, AR TR
27—
I?J BJ
33
e
; -1
| '
I SR ' S
!] (Y+ox,9+49,2+a2)
3i ! ‘
- _:_._.. -t -
i { ;
(X.%2)
5
L 2 Y S !
b ! 3 l
b ; 5 5
e e e e e e ! | i
{ 1 1 J
b o o o o .. H | 1
: ! } . !
I | ! : !
"f“""‘“""‘“{"" B A Aty e
g3 ~
j el &er e @r;ly 4

U.S. Patent Aug. 24, 1993 Sheet 2 of 3 5,239,624
41 43 41 43 41 43
1/ |)/
+ e+t . { | R
g i N e 2
RSeqs g - oo |23
CRIVE-45 T T4 (e B T4
47 47/
5 5355 57 59
¢
6! FZg. BA) 00000 —=¢em
63 65 67
W i | /7g.8(8) 77/ /7¢. 9(8)
71 73

U.S. Patent Aug. 24, 1993 Sheet 3 of 3 5,239,624

2
8
2
N
N
S

T+ —f=t=+f

L |

L1l F7g1oe) __I__J:'i_"‘i_l__ 79 Ze

[T gz

5,239,624

1

PSEUDO-RANDOM POINT SAMPLING
TECHNIQUES IN COMPUTER GRAPHICS

This is a continuation of application Ser. No. 379,503, 5
filed on Jun. 21, 1989, now U.S. Pat. No. 5,025,400
which is a continuation of U.S. application Ser. No.
746,726, filed on Jun. 19, 1985, now U.S. Pat. No.
4,876,806.

BACKGROUND OF THE INVENTION

This invention relates generally to the art of com-
puter graphics, and more specifically to the field of
point sampling of visual scene information for the pur-
pose of reconstructing an image of the visual scene.

One form of computer graphics that is becoming
widely practiced is to develop the sequence of video
image frames of a moving object scene from informa-
tion of the scene that has been stored in a computer
memory. The object scene database contains informa-
tion of the visual characteristics of the object scene,
such as color, as well as information of movement. The
creator of a sequence of video frames then uses a com-
puter to electronically assemble signals of each video
frame from the database in a manner that provides the
views and movement of the object scene that is desired
by the operator to be displayed.

The electronic signal for each video frame is typically
developed by electronic sampling of the object scene
database. A separate set of digital signals is developed to
represent the color and/or intensity of each pixel of a
standard raster scanned video monitor, for each video
frame produced. Each pixel is thus the smallest resolu-
tion element of the video display. The color and/or
intensity of each pixel is determined by sampling the
database information to determine the characteristics of
the object scene at the location of a given pixel. Such
sampling is generally done by averaging the object
scene information over a certain portion of the area of
the pixel, or, more commonly, to sample the informa-
tion at one or more points within the pixel, usually in
some form of a periodically repeating pattern.

Recent developments in the field of computer graph-
ics have been directed to increasing the realism of the
resulting images. Progress has been made in more faith-
fully reproducing object textures, shadows, reflections
and transparencies, for example. Much effort has been
directed to the problem of aliasing, as well. Existing
sampling techniques tend to generate video image
frames having “alias” images; that is, images that appear
to be real but which are not specified in the computer
database. This is generally recognized as a characteris-
tic of images formed through variously used point sam-
pling techniques.

Therefore, it is a general object of the present inven-
tion to provide computer graphics techniques that fur-
ther improve the realism of the resulting video image
frames and the totality of video productions generated
from computer database representations of an object
scene. »

SUMMARY OF THE INVENTION

This and additional objects are accomplished by the
present invention wherein, briefly and generally, the
object scene information in the computer database is
sampled by points that are pseudo-randomly distributed
in one or several functions or dimensions. According to
one aspect of the invention, the point samples are pseu-

10

15

20

25

30

35

40

45

55

65

2

do-randomly distributed in a particular manner across
the video image plane being constructed. According to
another aspect, the pseudo-random distribution of point
samples is taken over the time that is occupied by the
video image frame being constructed. This substantially
reduces or eliminates the undesirable aliasing, both spa-
tially and temporally. The distribution of samples over
time also increases the realism of the video frame by
adding the image blurring that would occur if the object
scene was being photographed according to usual tech-
niques.

According to another aspect of the present invention,
a video frame is constructed to have a depth of field by
sampling the data base as if the object scene represented
by it is being viewed through a lens of a limited aperture
that will view in focus only a limited depth of the object
scene. The point samples are pseudo-randomly directed
over a defined lens aperture when sampling the data-
base information.

According to another specific aspect of the present
invention, reflective and transparent characteristics of
an object are taken into account by recognizing the
degree of diffusion that occurs at each sample point. A
particular angle of reflection or refraction is pseudo-
randomly selected for each sample point from a range
of possible angles depending upon the object character-
istics. This adds realism to the resultant image by recog-
nizing the diffuse, blurry nature of reflections and trans-
lucency that is possessed by most real objects.

According to yet another aspect of the present inven-
tion, an intensity distribution is specified for a light
source that is illuminating the object scene. A single
light source ray is pseudo-randomly selected from the
specified light source distribution, for each sample
point. This technique has the advantage of eliminating
harsh shadows that result from existing techniques,
further adding to the improved realism of the images,
when a light source is only partially obscured.

"Additional objects, advantages and features of the
various aspects of the present invention will become
apparent from the description of its preferred embodi-
ments, which description should be taken in conjunc-
tion with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates generally a computer system that is
suitable for carrying out the various aspects of the pres-
ent invention;

FIG. 2 illustrates one possible form of object scene
information that is stored in the computer memories of
FIG. 1;

FIGS. 3 and 4 illustrate two existing point sampling
techniques;

FIGS. §, 6 and 7 show three specific embodiments of
the pseudo-random spatial techniques of the present
invention;

FIGS. 8(A) through 8(E) illustrate spatial aliasing of
the prior art techniques of FIGS. 3 and 4;

FIGS. 9(A) through 9(E) illustrate the improvement
brought about by the pseudo-random point sampling
techniques of the present invention;

FIGS. 10(A) through 10(E) show a Fourier trans-
form of a periodically sampled signal;

FIGS. 11(A) through 11(E) show a Fourier trans-
form of a pseudo-randomly sampled signal;

FIG. 12 illustrates generally the distribution of the
point samples over time;

5,239,624

3

FIGS. 13, 14, 15 and 16 illustrate several specific
embodiments of the pseudo-random time sampling as-
pect of the present invention;

FIG. 17 illustrates generally computer database sam-
pling by a given distribution of sample points on an
image plane;

FIG. 18 shows a sampling technique that provides an
image with a depth of field;

FIG. 19 is a ray tracing example for a single sample
that includes the effects of reflection, refraction and
light source distribution;

FIGS. 20, 21 and 22 illustrate additional details of the
example shown in FIG. 19; and

FIG. 23 provides yet another application of the gen-
eral techniques of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring initially to FIG. 1, a general computer
system as illustrated that is suitable for carrying out the
various aspects of the present invention to be described
in detail below. A common bus 11 is connected to a
central processing unit (CPU) 13 and main memory 15.
Also connected to the bus 11 is keyboard 17 and a large
amount of disk memory 19. Either a commercially
available VAX-11/780 or Cray large computer system
is satisfactory. A frame buffer 21 receives output infor-
mation from the bus 11 and applies it, through another
bus 23, to a standard color television monitor 25 or
another peripheral 27 that writes the resulting image
frames directly onto film, or both. Additionally, an
output device can simply be a videotape recorder of the
standard type.

FIG. 2 illustrates the organization of the information
of the object scene that is maintained in memory in the
computer system of FIG. 1. There are many ways to
store such information, one being selected for illustra-
tion in connection with the present invention. This
technique involves breaking down the object scene into
components, these elements being referred to herein as
geometric primitives. One such geometric primitive is a
polygon 31, for example, illustrated in FIG. 2 within an
overlay 33 that shows in dotted outline a few adjacent
pixels of the resulting display. The resulting display, of
course, shows the color and intensity of the object scene
within each pixel to be uniform, the size of the pixel
being the resolution element size of display. The poly-
gon represents portions of the object scene to be repre-
sented in a video frame.

The information stored in the computer memory for
each object polygon is as extensive as necessary for
producing a particular quality video image frame. Its
position certainly must be a piece of that information,
conveniently specified by the x, y and z coordinates.
The x, y and z coordinates of each of the corner points
of the polygon are stored for each video frame to be
constructed, as shown in FIG. 2 with respect to the
polygon 31. The “x” and “y” numbers represent, of
course, the horizontal and vertical positions, respec-
tively, of the points, while the “z” number specifies its
distance behind the video frame (image plane) being
constructed.

In order to be able to sample movement of the object
scene that occurs in the time period of one image frame,
a technique described in detail below, information is
also maintained for each polygon of its movement dur-
ing such time period. In FIG. 2, a second position 31' of
the same polygon is illustrated with its corner point

15

20

25

30

35

45

50

55

60

65

4

coordinates being stored as_incremental changes over
that of their initial positions. The position shown for the
polygon 31 is preferably, for example, that at the begin-
ning of a video frame, while the position 31’ is that at
the end of the video frame. The polygon can also
change its shape during this time period. ‘

Besides the positions of each object surface polygon
being stored in the data base, certain visual characteris-
tics are stored for each, as well. These include separate
red, green and blue color reflection signals, red, green
and blue transparency signals, extent of light diffusion
upon reflection, extent of light dispersion upon trans-
mission through the surface, and similar characteristics.
The use of these and others are explained below in
connection with the techniques of the present invention.

Referring to FIG. 3, a commonly used technique for
determining the color and/or intensity of each pixel of
the image frame is illustrated. The information in the
computer database, in this example that of the polygons
illustrated in FIG. 2, that is present in the space occu-
pied by a particular pixel is determined for a plurality of
points within the pixel. A large number of points are
illustrated in FIG. 3, being periodically distributed in
both dimensions, but there are even some techniques
that use only one or a very few sample points per pixel.
The nature of the object scene in each such sample point
is determined, and those determinations are combined in
some manner, such as by weighted or unweighted aver-
aging, in order to determine the color and intensity of
that pixel of the image frame.

FIG. 4 illustrates a similar periodic point sampling
technique, except that not all point samples are taken in
each case. Rather, the full density of the periodic sam-
pling pattern is employed only in regions of a pixel
where changes in the object scene occur, such as repre-
sented by a line 35. This image dependent technique
thus reduces the number of samples and the processing
time required.

-But these and other periodic sampling techniques
result in reconstructed images that include “aliases” of
the real image to be displayed. Much effort has been
directed to anti-aliasing techniques, one approach being
to process the video signal obtained from a periodic
pattern point sample technique in order to eliminate the
aliasing effects of the technique. Others have suggested
sampling in a non-periodic, dithered manner for a num-
ber of specific sampling applications. The techniques of
the present invention include improvements to and new
applications of such prior approaches.

Three different specific pseudo-random sampling
techniques are illustrated in FIGS. 5, 6 and 7, wherein a
single pixel is illustrated and, for simplicity of illustra-
tion, only four point samples per pixel are described.
However, an actual implementation would likely use
sixteen, or even as many as sixty-four samples per pixel,
if all of the aspects of the present invention are utilized.
For other specific implementations, a lesser number of
samples, such as one per pixel, could be utilized. But in
any event, the pattern of point samples, both within
each pixel and across the face of the image frame in its
entirety, are non-periodic, and form a non-rectangular
and non-rectilinear grid pattern. Further, each selected
sampling pattern may, alternatively, extend over an area
of multiple pixels or only part of a pixel. But the exam-
ples described herein use a sampling area coincident to
that of one pixel, for simplicity of explanation.

Each of the embodiments of FIGS. §, 6 and 7 deter-
mines the location of the sample points within the pixel

5,239,624

5

by first dividing the pixel into a number of nonoverlap-
ping areas equal to the number of sample points, in this
case four. A sample point is confined within each such
area, thus aiding in keeping the sample points spread
out. The four areas of the pixel are labeled in the Fig-
ures as numbers 41, 43, 45 and 47. The areas are shown
to be rectangular but can be some other shape.

In the embodiment of FIG. 5, the location of the
sample point for each of these four areas is pseudo-ran-
domly determined. Ideally, the “random” numbers to
be used to determine their locations are purely ran-
domly, but since they are so determined by computer,
there is some element of repetitiveness of sample posi-
tion within its defined area, although the distribution of
locations of a large number of sample locations matches
that of a random distribution. The most common way
for a computer to generate the x,y coordinates of each
sample point is to use a look-up table maintained in
memory that has a list of numbers with a distribution
being that of a random set of numbers. But the usual
technique is for the computer to step through the table
of numbers in sequence, so there are some repetitions
since the table of numbers has finite length. However,
the length of the list of numbers can be quite large so
that repetition does not occur for a significant number
of sample points. But in order to adequately describe
both a completely random selection of sample locations
and one controlled by such a computer look-up table,
the locations are referred to here in this description as
“pseudo-random”.

In an implementation of the technique of FIG. 5, the
same sample pattern is used on every pixel in a given
image frame. It is preferable, however, to eliminate all
periodicity of the sample pattern, including making sure
that no two adjacent pixels have the same sample pat-
tern. This can be done by using a sufficiently long look-
up table of random numbers. It is preferable to generate
a sample pattern with no two adjacent pixels (including
those diagonally adjacent) having the same pattern, a
result of the techniques shown in FIGS. 6 and 7.

Referring to FIG. 6, each of the four non-overlapping
areas of the pixel illustrated has a reference point posi-
tioned at a fixed location in each, such as its middle.
Each actual sample point location is then determined by
the computer by adding a random positive or negative
number to each of the reference point’s x and y coordi-
nates. These offset numbers are randomly determined,
such as from the computer random number look-up
table, and so repetition of the pattern would not occur
for some very large number of pixels.

Another application of the same offset technique is a
combination of the techniques of FIGS. 5 and 6, as
shown in FIG. 7. This is similar to that of FIG. § and
differs from that of FIG. 6 by having its reference points
distributed rather than fixed in the middle of the adja-
cent pixel areas. The reference point pattern of the
embodiment of FIG. 7 may be the same for each pixel,
but the actual point sample locations are determined by
adding a positive or negative x,y coordinate offset in-
crement to the coordinates of each reference point. For
convenience, a limit is placed on the maximum offset of
each, as indicated by the dotted outline around each of
the reference points of FIG. 7. The sample points in the
embodiment of FIG. 6, however, can be located any-
where within its respective portion of the area of the
pixel.

By first defining non-overlapping areas in which a
single sample point lies, bunching up of sample points is

15

20

25

30

35

45

50

55

60

65

6

avoided. It can be visualized that if each of the four
sample points could be positioned anywhere within the
entire pixel, there would be occasions, because of the
random selection of those specific locations, where two
or more of the sample points would be bunched to-
gether. Although defining a range of potential point
sample locations to be within a non-overlapping area
accomplishes this, there could obviously be some varia-
tions of this specific technique, such as by allowing the
areas to overlap slightly, or some other variation. It
may even cause no problem in particular applications if
the sample points are chosen in a manner that their
bunching together does occur occasionally.

Each of the specific techniques described with re-
spect to FIGS. 5, 6 and 7 provides a picture sampled
from a computer database that has fewer aliased images
than if a periodic point sample distribution is utilized.
The technique shown in FIG. 5, wherein the same pat-
tern is repeated for each pixel of the image frame, pro-
vides some improvement, but the techniques according
to FIGS. 6 and 7 are significantly better in reducing
aliasing. The technique of FIG. 7 has been observed to
be the best of the three because it has an additional
advantage of being less noisy.

Referring to FIG. 8, an example of how an aliased
image can be obtained and displayed is given. FIG. 8(A)
is a “picket fence” image of “slats™ 51, 53, 55, 57 and 59.
This image is being sampled by a periodic distribution
of points 61, 63, 65, 67 and 69, shown only in a single
dimension for simplicity. Since the period of the sample
points is greater than that of a periodic intensity varia-
tion of the image, all of those variations will not be
faithfully reproduced. FIG. 8(B) shows the image of a
video display that is developed from the samples of
FIG. 8(A), region 71 being of one intensity and region
73 being of the other. Of course, the image of FIG. 8(B)
is not a faithful reproduction of the image of FIG. 8(A).
But since three of the sample points hit a portion of the
image having one intensity and the other two a portion
of the image having the other intensity, the detail of the
other variations cannot be faithfully reproduced. The
curve of FIG. 8(C) represents the intensity variation of
the image of FIG. 8(A), the curve of FIG. 8(D) being
the sampling function, and the curve of FIG. 8(E) illus-
trating the resulting image of FIG. 8(B).

One way that has been suggested to avoid forming
such alias images is to increase the number of sample
points so that the detail can be captured. That is to say,
increase the number of samples in order to increase the
well-known Nyquist limit. But to use extra sample
points for this increases the computational complexity
and can never really solve the problem,; it only reduces
its appearance somewhat. No matter how mnany samples
are used, however, there will always be some situations
of aliasing, particularly when the scene is changing. In
this case, such a picket fence can show as a flashing
black-and-white image over a large area, a very undesir-
able result.

Referring to FIG. 9, the effect of a randomly distrib-
uted pattern of sample points is illustrated. FIG. 9(A)
assumes the same “picket fence” image in the computer
database, as with FIG. 8(A). But the sample points in
FIG. 9(A) are distributed non-periodically so that the
resulting image of FIG. 9(B) appears to be gray rather
than having large areas that are all white or all black.
The image of FIG. 9(B) appears gray since alternate
portions of the image are black-and-white, rather than
having large areas of each color as in FIG. 8(B). Fur-

5,239,624

7
ther, as the point samples of FIG. 9(A) are scanned
relative to the *“picket fence” image, there will be some
noisy visual effect, similar to film grain noise, but one of
considerably less annoyance than a large area flashing
black or white. The noise level is controlled by the
number of samples per unit area.

FIGS. 10 and 11 show in the frequency domain the
effect of periodic and stochastic point sampling, respec-
tively. In both of FIGS. 10 and 11, curves (A) are the
same, being an original signal, chosen to be a sine wave
in the space domain. Curves (B) differ, however, in that
FIG. 10(B) shows the frequency distribution of a spa-
tially periodic sampling pattern, while FIG. 11(B)
shows the frequency distribution of the ideal stochastic
sampling pattern. In both cases, the sampling frequency
is assumed to be below the Nyquist limit of the original
signal, so will not be able to faithfully reproduce the
original signal. But the comparison of the curves of
FIGS. 10 and 11 show the anti-aliasing effect of a ran-
dom distribution. The spatial sampling distribution
across the image is preferably chosen so that a Fourier
transform of such a distribution over an infinite plane
approximates a Poisson disk distribution, as shown in
FIG. 11(B). The primary characteristics of such a distri-
bution include a very high level at zero frequency, a
substantially zero magnitude to a certain frequency
(both positive and negative), and then a substantially
constant magnitude at higher frequencies. Except at
zero frequency, the sampling function in the frequency
domain (FIG. 11(B)) is substantially continuous. Such a
distribution in the frequency domain provides the de-
sired spatial position randomness and avoids bunching
of the sample points. The techniques described with
respect to FIGS. 5-7 approximate such a distribution.

The distribution (C) in each of FIGS. 10 and 11
shows the sampled signal in each of those examples, the
result of convolving the signal of curve (A) with the
sampling distribution of curve (B). In the periodic spa-
tial sample example of FIG. 10, a number of extraneous
spikes are obtained since each of the sampling spikes of
FIG. 10(B) is individually convolved with each of the
spikes of the signal of FIG. 10(A). Since the frequencies
of the signal of FIG. 10(A) are in excess of that of the
sampling function of FIG. 10(B), the sampled signal of
FIG. 10(C) is not a faithful reproduction of that of the
original signal. When the sampled signal of FIG. 10(C)
is displayed, it is in effect multiplied by a lowpass filter
similar to that of of FIG. 10(D). The resultant sampled
signal is shown in FIG. 10(E), which is the portion of
the signal of FIG. 10(C) which is within the band pass
of the filter function of FIG. 10(D). The signal indicated
at FIG. 10(E) is capable of reconstructing alias images
that bear little or no resemblance to that of the original
signal which was sampled.

The sampled signal of FIG. 11(C) also does not corre-
-spond with the original signal of FIG. 11(E), but when
multiplied by its filter characteristics of FIG. 11(D), the
resultant sampled signal of FIG. 11(E) is uniform over
the frequency range of the filter. This produces in an
image white noise, which is much preferable to recon-
structing an apparent genuine image that does not exist.

The techniques described with respect to FIGS. 5§-7
can also be utilized in a sampling system that modifies
the sampling pattern in response to the content of the
image information being sampled, so called adaptive
sampling. For example, if image changes or detail
within a portion of a sampling area required it, the pat-

W

0

40

55

60

65

tern of sample points can be repeated in such an area
portion in reduced scale.

According to another aspect of the present invention,
similar sampling techniques are employed over time in
order to add realistic motion blur, such as exist in video
and film techniques. Referring initially to FIG. 12, the

-example pixel of FIGS. 5-7 is indicated to have each of

its four samples taken at different times t1, t2, t3 and t4,
regardless of the specific technique used to spatially
locate the point samples. These times are selected to be
within an interval that corresponds to a typical shutter
opening for video frame acquisition which these tech-
niques are intended to simulate. Therefore, if there is
movement of the objects during the interval of a single
frame indicated in the computer database, then the re-
sultant image of that frame reconstructed from the sam-
ples being taken of the database information will simi-
larly show motion blur.

In order to reduce or substantially eliminate temporal
aliasing, the distribution in time of the samples over the
frame interval is pseudo-randomly determined. Refer-
ring to FIG. 13, a time line is given wherein four non-
overlapping intervals of time are designated as bound-
aries for each of the four sample points to occur. A
pseudo-random selection of the time for each sample
within each of these intervals is what is shown in FIG.
13. The same time distribution in FIG. 13 could be used
for each pixel of the image frame being constructed, but
is preferable that the sample times be different for at
least each of immediately adjacent pixels, in order to
maximize the anti-aliasing that is desired. Temporal
aliasing can occur when changes occur in the scene,
such as a flashing light, more rapidly than samples are
being taken. It will also be recognized that the distribu-
tion in time illustrated in FIG. 13 involves the same
considerations as the spatial distribution described with
respect to FIG. §.

Similarly, FIGS. 14 and 15 illustrate pseudo-random

* temporal sampling that is carried out in the same way as

the spatial sampling described with respect to FIGS. 6
and 7, respectively. In FIG. 14, the time of each sample
is chosen to be a psendo-randomly determined offset
from the center of the interval designated for each sam-
ple to occur. In FIG. 15, a reference time is pseudo-ran-
domly determined for each sample within its interval,
and then the actual time for each sample is determined
as a shift from this reference an amount that is pseudo-
randomly determined within certain limits. In each
case, the time distribution of the samples is such that its
Fourier transform preferably approximates a Poisson
disk distribution, in the same manner as discussed above
with respect to FIG. 11(B) for the samples’ spatial dis-
tribution.

The time intervals set aside for each of the samples
need not always be non-overlapping. An example of
overlapping intervals is given in FIG. 16, the exact
sample time being selected according to either of the
techniques of FIGS. 14 or 15. But the difference in the
example of FIG. 16 is that the probability is increased of
the samples being weighted in the middle of the time
interval of the image frame. This simulates a film shutter
that opens and closes relatively slowly so that motion of
the object scene during the middle interval of the shut-
ter opening contributes more to the intensity of the
resulting blurred image than does motion occurring
near the shutter opening or closing. Regardless of
which of the specific techniques for determining the
time distribution of the samples of a particular pixel are

5,239,624

9
used, the total time period in which all of the samples of
all pixels of a given image frame are taken is the same
specified time interval represented in FIGS. 13-16 by
the length of the time lines.

Referring to FIG. 17, a method is illustrated for sam-
pling the polygons of the object scene in the computer
database by the spatial and temporal sampling tech-
niques described above. A pixel 81 is shown, as an ex-
-ample, as one of a large number combined together to
form an image on a video screen (image plane). Rays 83
and 85 are projected behind the image plane from each
of two of the point samples within the pixel 81. The
spatial location of these point samples has been deter-
mined by one of the techniques described above. Their
individual rays are then projected, usually perpendicu-
larly to the image plane, to determine the nearestmost
polygons that are intersected by the rays at their se-
lected time of sample. Much work has been done on
such ray tracing techniques and involves a significant
computer sort and matching of the x,y coordinates of
the sample points with those of the polygons in the
computer database at the instant designated for the
taking of each sample. Usually, more than one polygon
will exist at each x,y sample location, so the computer
also determines from the “z” information of them which
is the closest to the image plane, and that is then the one
that provides the visual information (color, etc.) of the
object scene at that point. All of the visual characteris-
tics determined for each of the samples of a given pixel
are then averaged in some manner to form a single
visual characteristic for that pixel for display during
that frame.

Most computer graphics techniques show the entire
object scene for each frame in focus, as if it was being
viewed through a pinhole camera. This, of course, is not
an accurate simulation of the real world of cameras and
lenses, which have a limited depth of field. Depth of
field can be taken into account by a ray tracing tech-
nique illustrated in FIG. 18. A single pixel 87 has two
sample points with rays 89 and 91 extending from them
behind the image plane. The depth of field technique
illustrated in FIG. 18 is independent of the spatial and
temporal sampling techniques described above, but it is
preferable that those techniques be used in combination
with the depth of field techniques being described in
order to maximize the realism of the resulting image
frames.

The example rays 89 and 91 of FI1G. 18 do not extend
directly behind the image plane, as was described with
respect to FIG. 17, but rather are directed to intersect a
simulated lens 93 at points 95 and 97, respectively.
These rays then are directed again toward each other,
under influence of refraction of the simulated lens. The
rays intersect a focal plane 99 of the simulated optical
system in the same pattern as exists on the image plane,
as a result of defining the simulated optical system. The
sample point rays 89 and 91 will then intersect polygons
101 and 103, respectively. Only polygons within the
cone 105, shown in dotted outline, will be intersected
with rays from sample points of the pixel 87, as defined
by the characteristics of the optical system. Those poly-
gons that are close to the focal plane 99 will contribute
to a focused reconstructed image, while those further
removed from the focal plane 99 contribute to an unfo-
cused reconstructed image. In a computer software
implementation of this technique, it has been found
preferable to shift the x,y coordinates of the polygons
an amount dependent upon their z distance from the

10

20

25

35

10
focal plane 99 and the characteristics of the simulated
optical system, and then ptoceed with the sampling in a
manner similar to that shown in FIG. 17.

But whatever specific implementation is carried out,
the technique has the advantage of adding considerable
realism to the simulated image at the time that the image
is first formed by sampling the database. Intersection of
sample rays with the simulated lens 99 occurs over its
entire defined aperture. In order to further reduce alias-
ing, the location of points of intersection of the rays
with the lens, such as the points 95 and 97 shown in
FIG. 18, are pseudo-randomly determined in the same
manner as the earlier described pseudo-random deter-
mination of the spatial location and time of each sample
point.

Other unrealistic effects that result from the use of
existing computer graphics techniques are sharp shad-
ows, glossy reflections, and, if translucency of objects is
taken into account at all, that also results in sharp im-
ages showing the translucent objects. This, of course, is
not the real world of diffuse objects and extended light
sources, but are required simplifying assumptions under
previous algorithms in order to maintain within reason
the complexity of the calculations. But the distributed
techniques of the present invention can also be applied
to these tasks, in a similar manner as described previ-
ously, to add these realistic considerations. Referring to
FIG. 19, a single ray 111 is traced from a single sample
on the image plane (not shown) and interacts with the
object scene in 2 manner specified by the characteristics
of the light sources and object surfaces that are specified
in the database. The techniques described with respect
to FIG. 19 are independent of the techniques described
earlier, but, of course, maximum realism is obtained if
all of these techniques are combined together. What is
to be described with respect to FIG. 19 occurs with
each sample point of a particular image frame.

The ray 111 is first determined to strike a surface 113

* of the object scene, as specified by one of the polygons

40

45

50

55

60

65

whose characteristics are stored in the computer data-
base. If this part of the object scene surface is reflective,
a reflective ray 115 is then traced until it intersects
another object scene surface 117. The object surface
portion 117 may be observed in the completed image
frame as a reflection in the object scene portion 113. But
stored in the computer database is a diffusive light
spread of the surface 113, as indicated by dotted outline
119 and shown separately in FIG. 20. If the characteris-
tics of the surface 113 are specularly reflecting, such as
occurs with a mirror, the spread of possible ray reflec-
tion angles will be limited to essentially one. But most
objects have some degree of diffusion and will scatter
light incident upon them. Therefore, each sample point
ray is traced in a manner to select one of the possible
reflection angles, thereby to result in a realistic blurry -
reflection from diffusely reflecting surfaces since subse-
quent rays will be reflected off the surface 113 at one of
the other possible angles shown in FIG. 20. The possi-
ble ray reflection angles, as shown in FIGS. 19 and 20,
are weighted in one direction, as is actually the case in
diffusely reflecting surfaces. And, as before, the particu-
iar direction taken by any given ray 115 is pseudo-ran-
domly selected from the possible reflection angles.
The same consideration works in determining an
angle of transmission of a ray 121 through the surface
portion 113 if that surface portion is at all translucent.
Assuming that it is, possible angles of refraction are
stored in the computer database for that particular poly-

5,239,624

11

gon, the distribution of such angles being indicated at
123 in FIG. 19 and also shown in FIG. 21. The spread
of possible refractive angles depends, of course, on how

diffuse the translucency is. Plain glass, for example, will -

have a very narrow range of refractive angles, if not a
single angle. And once the ray 121 is pseudo-randomly
selected for a given sample point from the possible
refractive angles, another portion 125 of the object
scene can then be determined which is intersected by
the ray 121 and is partially visible through the object
portion 113.

In order to avoid sharp shadows, the realistic charac-
teristics of an object scene illuminating light source 127
is taken into account. As shown in FIGS. 19 and 22, the
light source 127 has a finite extended dimension, and is
not always a point as often assumed in present computer
graphics techniques. A ray 129 is traced from the illumi-
nated surface 113 back to the source 127 to see if there
is any other portion of the object scene, such as the
portion 131, that will cause a shadow to be cast on the
surface 113. As shown in the example of FIG. 19, the
ray 129 will detect no such shadow, but other possible
ray directions, as shown in FIG. 22, will be in the path
of the object portion 131 and thus indicate that the
object 113 is not illuminated by the source 127. The
particular direction of the ray 129 is pseudo-randomly
selected from those possible directions specified for the
source 127, as shown in dotted outline in FIG. 22. In the
example of FIG. 19, some of the rays will intersect the
object portion 131 and some will not, resulting in soft,
realistic shadows in the resulting image frame.

It will be recognized that each of the secondary sur-
faces intersected by rays, such as the surfaces 117 and
125 of FIG. 19, may also have reflective and translucent
properties. The process is continued until such reflected
or transparent images are so small in intensity as not to
make any difference in the resulting image being con-
structed.

Referring to FIG. 23, an example is given of the
board extent of the techniques described above that are
a part of the present invention. The techniques can be
used to determine a center of mass of an object, an
example of somnething that is desirable to be determined
in the course of computer aided design (CAD). An
object 141 of FIG. 23 has its surfaces determined by a
pseudo-random distribution of sample points, shown to

10

20

25

30

35

40

45

12
extend through the object in dotted outline. The pseu-
do-random nature of this sampling assures that the mea-
surement will be made on the actual object 141 and not
some alias image of it.

The various techniques of the present invention have
also been described by the inventors in a published
paper, “Distributed Ray Tracing”, Computer Graphics,
Vol. 18, No. 3, pages 137-145, July, 1984, which is
incorporated herein by reference. This paper includes
photographs of images generated with the use of the
various aspects of the present invention. The result of
motion blur, as described with respect to FIGS. 12-16,
is shown in FIGS. 3, 6 and 8 of that paper. Computer
generated images having a depth of field are shown in
FIGS. 4 and 5 of that paper, having been made by the
techniques described with respect to FIG. 18 herein.
FIG. 7 of that paper illustrates the shadowing and re-
flection techniques of the present invention that were
described with respect to FIGS. 19-22 above.

Appendices A and B attached hereto are source code
listings, in the C language, of computer programs imple-
menting the various aspects of the invention described
herein. They are part of a hidden surface algorithm.
Appendix A is a general program that carries out the
spatial sampling techniques of FIGS. 6 and 7 herein, one
of which is optionally selected, temporal sampling of
FIGS. 14 and 15 herein, depth of field of FIG. 18
herein, and secondary rays of FIGS. 19-22 for shadow-
ing and reflection in a special image case. The resultant
images of FIGS. 3, 5§ and 7 of the above-referenced
published paper, were made on a Cray computer with
the source code listing of Appendix A.

Appendix B is a program that implements all of the
aspects of the present invention for spherical objects
and resulted in the images of FIGS. 4, 6 and 8 of the
above-referenced published paper.

These computer program contain material in which a
claim of copyright is made by Lucasfilm, Ltd., the as-
signee hereof. This assignee has no objection to the
duplication of Appendices A and B by photocopying
and the like but reserves all other copyright rights
therein.

Although the various aspects of the present invention
have been described with respect to various preferred
embodiments thereof, it will be understood that the
invention is entitled to protection within the full scope
of the appended claims.

APPZNDIX A

hsvis.c

#ifndef lint

statle char scesid]] = "Q(#)ssvis.c 1.40 (Lucasfilm) 8/20/85";
Wendif .
#include <ssvish>

#include <ctypeh>

#include <stdioh>

flnclude <constants.h>

Copyright ® 1985 Lucasfilm Ltd.

static int VisNewGrid(), VisEodBucket{), VisNewFrame{), VisEadFrame(), VisParam{), VisCameral), v.,nrw(\ ovelrnd)

etatic int CSGNewTree(), CSGResolve() ;

CSGNewlree

statlc struct vis_procs VisProcs e= { VisNewGrid, VisEadBucket, VisNewFrame, VisEadFrame, VisParam, CSGNewTree, V

struct bbox (struet xy: mis, max;) ;

struct visiblepoint {
struct visiblepoint
struct xyz

*next ;
UK

5,239,624

13

float minz, maxz ;

struct color color ;

struct color " trans ;

struct visBags fag ; -

float glmhulqnmy H
#if CSG

short esgtree ;

short esgoode ;
#endif CSG ;

b

float drand() ;

statlc float Pi;’ :

statle Int Minx, Maxx, Mioy, Maxy ;

static Int Borderm]j ;

static float Hither, Yoﬂ H

statle Int XPerBucke!, YPetBucket, PixelsPerBucket, Fnllcul"ernucket H
static Int SamplesPerBucket ;

statle Int MaxSamplesPerBucket ;

statle Int DuckelsAcrossScreen ;

statlc struct pixelrgba *Pixel ;

statle struct visiblepoint **Point, *VisFreelist=0 ;
static Int NVis=0, NVisinUsc=0, NVisMaxUsed=0 ;
static int VisMallocSize=(16°1024~84) ;

statle Int [lit, Miss, Lerp ;

statie Boat Focallength = 0 ;
statlc float FSiop = 0 ;

statle float FocalDistance = 0 ;
float Dolx_s, Dofx_b, Dofy_s, Dofy_b ;
int PislloleCameram] ;

statle float FilterWidth = 20 ;
static Int FilterType = 1
statle Int BoxFilterFlag = 0 ;
static Boat boxSlter{xy} float x.;

{ return (x>FilterWidth[Iy >FillerWidth) 10 : 1; }
static Boal gaussianGller(x,y) float xy ;

fioat wd ;

dmex®x+y°%y;

waFiller Width*Filter Widtb /4.;

return (d>w) 7 0 : exp(~d) - exp{-w);

static Boat sinc(r) float r;
{ return {r<.001&&1>~.001) T cos(2')/1 : sin(2%)/r; }
static Boat sincBlter(xy) float xy ;
{ return sicc(x)*sinc(y); }
static float bessel(r) float r;
{ return (r<.0012Lr>—-001) ¥ 1 & §1(2%)/2; }
static 8ost besselflter(x,y) float xy ;
{ foatr;
£ = sqri{xx+y%y);
return bemel(r);

static Hoat bartlettBites(x.y) Boat xy ;
{ flost axay,w;
ax = (x<0) ? -x : x
sy = (y<0} ? ~y i y;
w me FilterWidth;
return (w<ax|iw<ay} ? 0: (w-u)'(--ny)

)

Wdefine FI'LTERNAME 30

#define NFILTERS §

static char FllurNamc[NFﬂ.TERS][FH.TERNALE] e
{"box", "Gaussian®, "sinc®, "Dartlelt”,
"Bessel”) ;

static Hoat {°FilterRoutine|NFILTERS|)) =
{boxfilter, gaussianblter, sincBiter, bartiettBiter,
besselfilter);

#define NJITTER 512

static Int JitlerFlag=1;

siatic float XlJitter[NJITTER], YJitler[NITTER], TJum[NnTTI:n]
static float LXJitter|NJITTER], LYJiter|NJITTER]

14

drand

VisAlallocSizc

bor filter

. .Ju:{n’lln
gaussianfiller

sinc
sincfiller
!bessel
bcsséi[i{ler

bartlett filter

-Jloal

5,239,624
15 16

static struct xy *Location ;

slatle float *Filter ; :

static struct xy *Leos ;

static float MinXJitler=0, MaxXJitter ; ’
statlc float MinYJitter=0, MaxYJitter ;

statle Int NS ;

statle Int NxGridemq, NyGridemd ;

static struct xy LensiGiIn] == {
0.312500, 0.000000,
=0.312500, 0.000000,
0.750000, 0.000000,
=0.750000, 0.000000,
0.000000, 0.312500,
0 000000, ~0.312500,
©.000000. 0.750000,
0.000000, =0.750000, : flost
0.625000, 0.375000, -
0.375000, 0.625000,
~0.625000, 0.375000, °
~0.375000, 0.625000,

~0.625000, ~0.375000,
—0.375000, ~0.625000 } ;

struet vis_procs *Visload() { . VisLoad
Pi = 4%atan(1.0); '
return(&VisProcs);

)

static int VisCamera{locallength, stop focaldistance)) VisCamera
float focallength, fstop, focaldistance ;
{

PiniloleCamera == (focallengthmem0.0} ;
if (PiotioleCamera) return ;

If (focallength<0.0 || fstop<=0.0 || focaldistance<=0.0} {
tprintf (stderr, "Invalid arguments Lo visible surface camera routine:\e") ;
fpriotf (stderr, "\tfocal length TBf\n", focaliength) ;
fprintf (stderr, "\t stop %MN\sa", Islop) ;
fpriot! “{stderr, "\tfocal distance %I\e", focalistance} ;

)

Focallength s focallength ;
FStop e= [stop ;

FocalDistance == focaldistance ;

static int VisCameraSetup() , ' VisCameraSctup

float lensradivs ;
static struct xyz Aeye=(0,0,1), Beyem(1,1,1} ;
struct xy Ascreen, Bscreen ;

/® The perspective transformalion from cye space lo screen apsce arsumcs
® & pinhole camera located ot the origin in cye apace, and tronsforms
* cach point (XeYe,Ze} in eye spoce lo s point (X3,Y2,25) in screen
® spoce. For dopth of Jicld, however, diffcrent sample points assume
® pinhole camoras localed of diffcrent points on the lens. A point
® that is ot (XeYe,Ze) in eye spoce of the cenler of the lens is at
® (Xcl,Ycl,Ze) in the eyc spoce of the point flenszlensy,0) on the
® lens, where
® Xcl-Xe == lensz * (f - Zeffocaldistance)

* Yel.Ye = lensy * (1 - 2effocaldistance)
® The valurs of lensz and leney tha! we wie ere express a2 & [raction
® of the effective lens radius, so thet our formulas are eclually’

® XNel-Xc == lenaz ® lensradive ® (1 - 2effoceldistance)
® Yel-Ye == lensy ® Iensradivs ® (1 - Zeffocsldistance)
® where

® Jensradivs = 0.5 * focallength [fstop

® \We koow that the perspective matrix is of the lorm
*3000 .

*0b0O .

*

edelf

5,239,624
17 18
*shio
® so that
® Xs m (a°Xe 4 *2Ze + g) [(1°2¢)
® Vi w= (bXe + d°Ze + b) [((°Z¢)
* and
* Xsl = (a°Xel 4 ¢*Ze + g) [(1°2¢)
® Ysl = (b'Xel + d°2e 4+ b) [(1*2¢)
¢ giving w
® XskXs == (Xel-Xe) * a/(r*Ze)
. w= leosx * Jeasradius © (aff) * (1fZe - 1ffocaldistance)
= Jensx * (Dofx_afZe 4 Dolx b
YolYs == (VelYe) * by(f*Z¢)
= leosy © lepsradius ® (bff) ® (1/Ze - }ffocaldistance)
v lensy * (Dofy_s/Ze 4 Doly_b
These formulas are the oves we wse L Uansform screen space poials
o account for different Jems localions.
We can calculate the key variables in these eqations by findiag the
the screen space coordinates of the poiats A=(0,0,1) sad B={l1,1,1):
XsA = (2%0 4 ¢°1 + g) [{t°1)
o (egl/t -
XsB = (stetg)/l -
XsB-XsA = aft
ViB-YiA = d/f
and it follows that
Dofx_s = {X3B-XsA) * lensradius
Dofy_s = (YsB-YsA) ¢ lepsradius
Dofx_b = -Dofx_a/focaldistance
Dofy_b = -Doly_s/localdistance
.I ...‘?l(‘.m-n‘; e
if (PictioleCamera) return ;

............"......

Jeasradius = 0.5 ® Focalleogth [FStop ;
EyeToScreenXY{£:Acye, & Ascreen) ;
EyeToScreeaXY (K Brye & Dscreen) ;

Dofx_a = lepsradius * {Dscreenx — Ascreeny) ;
Doly.a = lensradius ® {Dscreeny — Ascreeay) ;
Dofx_b == —Dofx_3 | FocalDistance ;

Dofy_b w= =Dofy_a [FocalDistance ;

static ist VisEndDucket{xb,yb) Vislh tli. o
Int xbyb ;
{

float *jx, %jy, *jt. %ilx, %l ;
int xy ;
reglster Int s, § ;

. reglster struct mpoly *mp
struct mpoly *MpGetBucket() ;

Int left, right, top, bottom ; . .
float aiphs. salpha: ' ~VitEndDucket
#if ALPHABETA

float betal, betal, beta2, bita3, oma ;
#endif

struct bbox bound(}, box, speedbox ;

struct bbox bousdspeed() ;

int xmin, xmax, ymis, ymax ;

statle struet xyz vertex|t], v|4] ;

Int ssample, pixel ;

float locx, locy, dx, dy, Ix, By, 1x, 1y ;

float ax, ay, bx, by, lensx, lensy ;

left = Minx 4+ xb*XPerBucket ;

top == Miny 4 yb*YPerBucket ;
right == Jelt 4 XPerBucket ~ 1 ;
boliom w= top <+ YPerBucket — 1 ;

mpmNpGetBucket(xb,yb):
if (!mp) goto emptybucket;

bitro ((char ®)Pixel, FiltersPerBucket’siseofistruct pixeirgba)) ;
CalkSamplesPerBucket{mp) ;

biero ((char *JPoist, SamplesPerBucket®sizeof(struct visiblepoint *));

19

jx = EXitter[(int)(23*drand())] ;
jy = &YJitter[(int}(23°drand()} ;
jt = &TJitter[(Int}23*drand())] ;
jix == ELXJitter{(int}23°drand())] ;
fly = ELYJitter|(int}23°drand())] ;
for (; mp; mpsmp~>npext) {

beopy ((char *}mp=>v,(char *}vertex alzeof{vertex)) ;

verlex
verlex
verlex
vetlex
verlex
vertex
verlex

N].x —w Jelt ;
X == left ;
2]x - lelt ;
I.x —u- lelt ;
D).y ~== top ;
Iy == top;
2y == top ;

verfex

3.y === top ;

box s= bound(vertex} ;
mp—->minsg = box.min.s ;
mp->max.z = box.max.g ;

#1f MOTIONBLUR && IGLOSS

If (mp~>fag.moving) |
spredbox = bound{mp~Dspeed) ;
it (speedbox.min.s <0) box.min.z 4= speedbox.min.t ;
it (speedbox.max.2>0) box.max.s +m= spredbox.mavas
mp~>min.z = bax.minz ;
mp—>mar: = box.max.z ;
#if DEPTHOFFIELD
i ('PinlinleCamera)
bounddofl (Lbox) ;
#endif DEPTHOFFIELD
speedbox.min.x [e= NS ;
speedbox.max.x /= NS ;
speedbox.miny fm= NS ;
speedbox.maxy fm= NS ;
If (speedbox.min.x<0) box.miv.x += speedbox.min.x ;
If (speedbox.max.x>0) box.max.x +s= speedbox.max.x ;
If (speedbox min.y <0) box.min.y 4= speedbox.min.y ;
U (specdbox.max.y >0) box.max.y 4= speedbox.max.y ;
for (s=0; s<NS; s++4) {

salpha == s/(float)NS ;

Jocx == Locationd.x ;
focy = Location[s]y ;
leosx == Lenssx — .5/NS ;

lensy = Leot|s|y —~ B/NS ;

xmin == box.min.x = focx « MaxXlJitter ;

ymic == box.min.y = locy = MaxYJitter ;

amax = box.maxx = locx /* ¢+ MinXJitter %/ ;
ymax = box.matvy — locy /° + MinYlille %/ ;
tf (xmin <0) xminm=0 ;
It (xmax>=XPerBucket) xmaxmXPerBucket-1 ;
i (ymin<0) ymiom0 ;
tf (ymax> = YPerBucket) ymaxmYPerBucket—) ;

for {y=ymin, dy=locy+ymin; y <mymax; dy++, y++4) {

5,239,624

pixel = y*XPerDucket 4+ xmis ;

asample == pixel*NS+s ;

§w= 7% 4 2%ixe ;

for (x=xmin, dx=locx+xmis; X<==xmax; assmple+=NS, i+=2, dx++, x++) {
alpba = salpha + jt|i+3 ; ’

oma == 1 — alphs ; . '
beta0 == alpha [(alpbs + oma’mp— > abratio]0]

#if ALPHABETA
betal
beta2
betald
Pelse
Wdefine betal alpha
#define betal alpha
#define beta2 alpha
#define betad alpba
fendif
vjol.x
v|ijx
v} x
vj3x
v{ol.y
viily

alpba
alpha
alpha

verlex
verlex

[(slpba + oma®mp—> abratiofl]
/ (a'pha + oma®mp—>abratio|2]
/ (alpbs + oma®mp~>>abratio}3]

X + belad’mp~>speed[0].x ;
X + betal’mp=>specd|l] x ;

verlex
verlex

x 4 belal*mp~>sperd|d].x ;

verlex
veriex

¥ + betad*mp=>1peedOly ;

¢,
1
2].x 4+ beta2®mp—>apeed|2x ;
3
It
1}y 4 betal’mp—>speediljy ;

)
)
)
)

s =s ws »

20

~VieEndDucket

5,239,624
21 22

v[dy = vertex|2ly + beta2’mp—>upeed(y ;

v[3]y we vertex|3ly 4 beta3*mp—>speed]d]y ;

v{0].2 = vertex|0].s + bets0’mp~>speediOfs ;

v[t]s == vertex|t].z 4+ betal®mp—>aperd|l]s ;

v[d1 = vertex]?.z + beta2*mp—>apeed|2]s ;

v[3f3 = vertex[3s 4 beta3®mp~Dapeed|d1 ;
#it DEPTHOFFIELD ’

U (PintloleCamers) {
Ix = lensx + jlafi+3] ;
by o= lensy + jlylitq] ;
ax . : : g:(rx-: : .
2y w= y.a . ek u
bx = I ® Dox.b : ~VieEndDucket
by = Iy * Doly.b ;
jOf.x 4= ax- [vjoj2 ;
Ix 4= ax / v]i)2;
2x 4m ax [v|ds;
Y.x 4= ax [v3a;
Oy += sy [v[o|s;
Ly 4= 3y [wjt]2;
Ay 4= ay [v[da;
My 4= 3y / vf3l2;
o= dx + jxfi} - bx:
ry = dy + jyli+3] ~ by ;

4 4 @€t 44

)
else
fendif
x = dx + jxli] ;
ry = dy + jyfi+}] ;-
[0 .x ——r vjoly ~=T1y;
vfl]x o rx ;vt]y —w- oy
V2] X —m=rx; vy ~m= 1y ;
vi]x —m rx ; o3y —m 1y ;
sample{psample,mp,y) ;
} , :
box.mis.x +e= weedbox.min.x::
© box.max.x 4= spredbox.maxx ;
box.min.y 4= gpeedbox.miny ;
box.max.y +m= speedbox.maxy ;
}
}
else
#endif

{
#1f DEPTHOFFIELD
it ('PintoleCamera) {
bounddof (&box) ;

#1r GLOSS
. float 4 ;

d = sqrt (mp=>specd|0].x*mp—>rpeed(0]x 4
mp=>speed|0]y ‘mp~DapeediO]y +
mp—>speed|0].2°mp— > speed[0].1) ;

#endlf

v[0].z = vertex|0].s
vjt].r = vertex|l}x
vlﬂ,; = verlex 'Il.l
vj3l.e = vertex]3]s ;
for (s=0; s<NS; s++) {

Jocx = Locatioas|x ;

locy = Locationsly ;

leasx == Leasls|x — 5/NS ;

lensy = Leasjs]y — .B/NS ;

xmis = bb:x.n-x_in.x - 'l:’x - :{l:%;ilm H

ymin m= box.miny - - itter ; Wk

wmax = boxmaxx — boex /* + AfinXJitter ¥/ ; ~AEndDuct

ymax w boxmaxy = by /* + MinYlJitter %/ ;

i (xmin<d) xminm0 ;

If (xmax> == XPerBucket) xmax=XPerBucket~1 ;

If (ymin<0} ymin=0 ;

If (ymax> = YPetBucket) ymav=YPerBucket~1 ;-

for (ymeymin, dy=locy+ymis; y<mymax; dy++4, y+4) {

pixel me y*XPerDucket + xmin ;
nsample s pixel’NS+4s ;

PP

5,239,624
23 24
i = 7% 4+ 2%pixel ; -
for (x=mxmin, dxmlocx+xmin; x<mexmax; msample+=NS, i+m2, dxt+, x+4) {
Ix == Jeasx + jhfi+3 ; .
ly = leasy + Jiyli+d] ;

Ix *= d ;
by ‘= d;

#if GLOSS

Fendlf

ax = Ix * Dolx_s ;
sy = Iy * Doly_a;
bx w= Ix * Dolx_ b ;
by = Iy * Dofy_b ;

©rx e dx 4 jafi] =
1y = dy + jyji+i]

- vj0).x == vertexjo].x
v[1].x

vertex{l
v[2].x = vertex]?]
v[3].x == vertex|3]
v[0].y = vertexjol.
i}y vertex|t
v[2]y = vertex|2
v[3].y = vertex]3].
sample{osample,mp,v) ;

o

X

ax/vertex{0].
ax/vertex
axfvertex
ax/vertex
3y [vertex
sy [vetlex
sy/vertex
ay/vertex

P -
b0 b 30 e W0 b b Be

JJIIIATIRAGL
=)

3

LK I O K

we me w2 wo We we w0 e

g e S e M M e
]

Wendil

v[0}.2 o= vertex{0]: ;
v]i].z == vertex|l]s ;
- 1]

H

v{Y2 = vertex|2]z ;
v{3).3 = vertes[3j.s
for (s=m0; s<NS; s++) {
focx == Location)s.x ;
locy == Location]s]y ;
xmin == box.min.x ~ focx ~ MaxXlJitter ;
ymia = box.min.y — Jocy — MaxYlitter ; :
xmax = box.mavx = boex /¢ + AfinXJitter %/ ;
ymax = boxmaxy — lcy /* + AfinVliller %/ ;
If {xinin <0) amin=0 ;
It (xmax> mXPerBucket) xmaxaaXPerBueket—1
It (ymin<0) yminm0 ;
¥ {ymax> = YPerBucket) ymax=mITerBucket~1 ;
for (y=ymin, dy=locy+ymis; y<=ymax; dy++, y++) { ~VirEndDucket
pixel = y*XPerBuckel + xmnin ; -
nsample we pixel*NS+s ;
ie 7% + 2°ixel ;
for (x=xmin, dx=locx+xmia; x<mexmax; ssample+=NS, i+=2, dx4+, x++) {
rx = dx 4+ jxli] ; '
1y = dy + jyli+1) ;
v[o].x == vertex|nf.x
vil]x = vertexfl].x
v[2].x = vertex|3x
v[3].x == vertex{3].x
vio]y == vertex{Oly
-

iy vertex]l].y
v[2]y = vertex|2y
v[3ly = vertex|3)y
samplc(nsample,mp,¥) ;

s e @ wo @0 We we we

qaIaAaqAN

}
)
)
)

CSGResolve{) ;
Siter{) ;
lrecp?inu() :

DisplayWindow (Pixel, lefi—Border, right+Border, top—Border, bottom+DBorder) ;

MpEmptyBucket{xbyb) ;
return 1 ;

5,239,624
25 26
emplybucket:

DisplayWindow ((struct pixelrgba *%0, kl’l.-Botdet. right+Border, top—Border, bottom+Dorder) :
MpEmptyBuckey{xbyb) ; igh » lop er, rder) ;

return O ;
)
static int VieEadFrame{) haI,u..; v

MpBu-ketEadFrame() ;
DisplayEndFramef{) ;

static int VisFilter(ty pe,width) : Vil .
char *lype; ‘ '
"float widlh ; »

Int i;

if (Filter Width<=0.) goto Error;

for{i=0,i<NFIL IERS:i++)

If (*stremp(type,FilterNameli])) {

Filte:Type o= | : : Co)
FillerWidth == width; . <VeFilter
BoxFilterFlag v {widthemem10 &2 Istrempitype,"box"));
return;

) . .

}
fprintf (stderr, "The stochastic hider only has the followiag filters:\n") ;
for(im0;i <NFILTERS;i++)
fprint! {stderr, “%%s " FiltertNameli]) ;
fprint! (stderr, “\n") ;
return;
Error:
tpriotl (etderr, *Filter width must be >0\s") ;

static int VisNewFrame (misx,maxx mln].maxy.!PﬂJPﬂMn:n.lllleuu) VieNewlrame
float hither, yon ;
{

© int #x

- Hither == bhither ;
Yoo == yon ;
Border = FillerWidth/2. + 0.499 ;
XPerBucket == xper ;
YPetBucket = yper ;
PixelsPcrBuckel == Xl"ﬂBucht * YPerBucket ;
FiltresPerBuckel o (XPerBuekeH"'Bovdtt) ¢ (\T’uBuhH!‘Buder) ;
tablesinit{NxGrid NyGnd)
MaxSamplesPerBucket == PixelsPerBucket * NS ;
Miox = minx ~ Botder ;
Miny == miny — Border ;
Maxx = maxx + Border ;
Maxy == maxy + Border ;
ax s= Maxx ~ Misx + 1 ;
BucketsAcromScreen w= (ox+XPerBucket—1) / XPerBucket ;
1If (Point) {
frec{(char *)Ponint) ;
free((char *)Pixel} ;

Point == (struct visiblepoint **) matloc ({unsignedMaxSamplesPerDucket * slzeof{struet visiblepoiat *))) ;
Pixel = (struct pixcligba *) malloc {(unsigned{FiltersPerBucket ® llno!(ltruet pixelrgba))} ¢

VisCameraSetup() ;]

MpBucketNewFrame {Minx, Maxx, Miny, Maxy, XPetBucket, YPerBucket, sideways, hither, yoo) ;
DisplayNewFrame [ininx, maxx, miny, maxy, Botder, Xl etDucket, YPerBucket, sideways) ;

Hit == 0 ;

Letp = 0 ;

Miss = 0 ;

‘return Border ; -

slatic int VisNewGrid(g) | VisNewGrid

5,239,624
27

struet grid *g;

MpBucketNewGrid(g) ;

static inl VisParam(ac,av) char **av; {
it x,y;
while{ac>0) {
if (!stremp(®av,"grid")) {
i (scmmel 1 fisdigit{®av]1]}) {

NxGrid=4;
NyGridm4;
vt 4
=

zlu I (3c>=3) {
x=eatoi(av|1]) ;
y=steilar]2]) ;
I (x<~0 || y<w=0) goto Error;
NxGtid = x;
NyGrid = y;
avtemd;
-3

)
else goto Error;

Zln It (!stremp(®av,"jitter™)) {
i (ac>e=1) {

JitterFlag = O0Off{av[l]) ;
avdm2;
-2,
) .
else

JitterFlag o= 1

avi 4

e

Zlu goto Error;
return ;
Error:
fprintl (stderr,"The stochastic bider can take these parameters:\n®);
_fprintl (stderr,"\tgrid %%2d %5hd\n");
fprintf (stders,"\tjitter onfolM\a");

#latic int VisPrint(s)
char % ;

I (s && (stremp(s,"stat”))) {
reglater struet visiblepoint ®vp ;
reglster Int » ;
MpPrintStat{) ;
for (o==0, vpmVisFrecList; vp; ypemvyp~Suext, a++) ;
printf {* Visiblepoints: $34d allocated®, NVis) ;
printf (* %4d kb", slceof{struct visibicpoiat)*NVis/1024) ;
printf {* %4d vsed”, NVisMaxUsed) ;
priotl (" 954d in wse”, NVislnUse) ;
priotf (7 S54d free\a™, ») ;
» = Hit+Miss ;
if (p=wm0) pem} ;

pristf (" Hider samples: 935.21T5% (%d bis and %d misses)\o",
100.°1it/(Roat)n, Hit, Miss) ;
it (i)
pristf (" Hider 3 berps: %5.20%55 (S2d lerps out of Sod bits)\n",
) 100.°Lerp /(Boat)ilit, Lerp, Hit) ; :
else {
printf {* Hider: stochastic sampler”™);

priotf (* (%ed by Std samples per pixel)”, NxGrid, NyGrid) ;
printf (" jitter Sos\o", JitterFlag!on~:"of") ;

printf (* Filter: %os, Sof pixels wide\n”, FilterName|FillerType]. Fillcr“'khﬂ :

It {PiolloleCamera)
pristf (" Camera: pinbole\a®) ;

28

~VMoeNewGnid

VisParam

VisPrint

~ Ve rint

29
eloe {
printf (" Camera:
printf ("
priat! (*
)
}

)

slatic struct bbox bound(v)

5,239,624

loca-l length %N\ Focalleagth) .
f stop %N\e"FSlop) ;

focal distance %M\2" FocalDistance) ;

struct xys {4} ;
struet bbox b ;

i (v[o]x < vli)x) {
¥ (v[2x < v{3]x) {
- b.minx = {v[0].x < v|2].x) ? vi0ol.x
bomaxx = (v[i]lx > v[3x} ? v[i]x

e |
b.minx = (v]l.x < v[3x} ? vin]x
bmaxx = (v]i}.x > v[{2x) ? v]l}x

else {
¥ (v]2x < v{3}x) {

cvjdx g

vl

(VR

B

bminx = (v[i]x < v[2x) ? v]i]x ¢ ¥ ;

b.maxx = {v[0}x > v]3.x} ? v|o}x

else {
b.minx = (v]ilx < v[¥x} ? v[l]x

)
}
If (v[olLy < s[i}y) {

i (vf2ly < vP3ly) (
bminy = (v[oly < v|2y) ? o]y :

RN

vjyx s
bmaxx == (v[o}x > v]2}x) ¥ v[Ofx :

v|dx ;

2y ;

bmaxy = (v[ily > v[3]y) ? vi]y : of3}y ;

else {
b.miny == (v|oly < v[3}y) ? [0}y :

v3ly :

b.maxy = (v]ily > v[23.y} t v[1}y : v]3y ;

else {
Ir vy < vf3ly) {
b.miny = (v|t]y < v]2)y) ? ¥{l}y :

1y

b.maxy = (v[oly > v[3]y) ¥ viofy : v[3]y ;

eloe |
bminy = {v[lly < v[3]y) T v)]y :

w3y ;

b.maxy = (vjoly > v]2l.y) T vj0ly : o[y ;

)
i (vjo].z < vft]2) {
i (v[2)s < vf3le) {
b.aming = (v[o].z < v[2}1) ? v]0lx
bmavs == (v{i]2 > v}3x) T o]t :

eloa {
b.minz = {vjolx < ¥{3]3) ? vj0]s
bmaxz = {v[i]2 > v][2}2) ? vt} ¢

"y {2 B3l |
1If {v|2}.2 < *]3j2 ‘
bminas = (v}i]z < v[2) P v]i]s:
b.maxa = (v[0]2 > v[3].2) t vjofx :

else {
bming = (v[t].2 < v[32) Vvl
bmaxs = (v|ojz > v[2).3) 1 vjojx :
)

peturn b ;

tv]qe;

vi3e s

s of3a;

3z ;

L E
\RER

bound

wbound

5,239,624
31

#1if DEPTIIOFFIELD
bounddol(b)

struet bbox *b ;
{

Boat bl, b2, imis, zmax ;
/%] (PinlloleCamers) return %/

tmia == b->min.g ;
tmax = b->maxz ;

if (zmin<liitber) amis == flither ;
i (zmax> Yon) smax == Yoo ;

bl = Dofx_aftmia + Dofx b ;
b2 = Dofx_s/tmax + Dofx_ b ;
if (b1<0) bl == =bi ;

If (b2<0) b2 me —b2 ;

If (b2>b1) bleb2 ;

b=>minx == bl ;
b=>max.x ¢== bl ;

bl = Dofy_s/tmin + Doly b ;
b2 = Dofy_s/tmax + Dofy_ b ;
If {(b1<0) bl = —bi ;

If (b2<0) b2 = ~b2 ;

1If {L2>0b1) blmb2 ;

b=>miny —wm bl ;
b->maxy 4= bi ;

}
#endif DEPTHOFFIELD
static Cal:S:mplesPchucht(mp) reglster struct mpoly *mp ; {)

static applyboxfilter()

Int x, ¥ ; .

register Int s ;

reglster struct pixclrgbs *p ;
reglster struet visiblepoint **
reglater Boat oneoveras ;

int bb ;

vpp, ‘vp |

bb == 2°Border ;

oneoveras = 1.[/(Roat)NS ;

vpp = Point ;

vp = *vpp+t ;

p »= Pixel + Border*(XPerDucket+bb} + Border ;

for (y=0; ++y<=\TerBucket; p+mbb) {

for (x=0, ++x<=XPerDuckel: p++) {
for (s=0; +4s<=NS; vp=("vpp++)) {
1t (vp £& lvp—>fag matte) {

p—>T1 +m= opeoverns * vp—>color.r ;
p—>g +w= oncovetns * vp—~Dcolorg ;
p->b 4= opecoverns ® vp—Dcolorh ;

p—>3 +w= (vp—Dflag.opaque) ! oncoverns : oncoverns * (1.—
(vp— > transr4vp—>trass g +vp- D> trans.b)*(1./3.)) ;

)
}
)
)
)
static Slter()
iInt x, ¥

reglster Int j, i :
regliter float °f;
register struct pixelrgba *p ;
register struct visiblepoint *vp ;
reglster Int s ;

struct visiblepoint **vpp ;

float alpha ;

struct pixelrgba *ploop, °pp |

32
bounddof

~bounddef

CalcSampIcsPerBuckct

applyboz filler

Jilter

5,239,624
33 M
Int fskip, pskip, pback ;
Int width, bb ;

i (BoxFilterFlag) { H .
applyboxBiter():
return;

/* Set wp increments 20 thel in the inner loop: :
. J = 8(Filter[s *FilterViidth 'Fllcr“|dlh+J'Filfcrlhllh+|[) ;
e p = RAazd + (y+))'(APﬂHuckd+t'der} +2+i;

Y/

bb = BocdeHBovder H

width == 1 4 bb ; :

fikip = mdlb'wdth -

pskip = slzeof(’p) ¢ ()G"qucierb-mdlb) H

pback = slzeofl*p) * (width*(XPerBucket4bb)) ;

for (y=0, pmPixel, vpp=Point, vpe=(*vpp++), +4y <=YPerBucket; p+wmbb) {

for (xm=0; ++x<meXPerDucket; p+4) { -
for (s=0, f=Filter; ++s<=NS; vpm{*vpp++)) {
I (vp && lvp—D>lagmatte) {
i (vp=>Bag.opaque) |
for (j=0; ++j<=ewidlh; } {
for (imD; +4i<=width; }

p~>t 4= °1 * yp=-Decolorr ;
p—>g 4= *[* yp—Deolorg ;
p=>b 4w * * yp~Dcolor.b ;
ptt—Da 4w %44 ;

p = (struct pixclrgbs *){(char ®jp+pskip) ;
p = {struct pixelrgba *){chsr *)p-pback) ;

else {
alphs = 1. - (1L./3) ¢
{vp—Dtransr4vp—>trans g4+ vp—>transb);
for (j=0, ++j<mwidlh;) {
for (i=0; ++i<m=width;) {
p=>t +m * ¢ yp~Dcolort ;
p=>¢8 +m= *f * vp=Dcolot g ;
p->b 4= I * yp-Dcolorh ;
pte=>a 4= ‘(44 “alphs ;

p = (struct pivelrgba *){char *Jp4+pskip) ;

p = (struct pixelrgba *)(char *Jp—pbxek) ; wfilter

elee { :
f 4= fskip ;
)

)
)
}

Boat lerpz(v)

lerp:z
reglster struct xyz v|4| ;
{ .

® Interpolate 3 waing Shepard’s method. Use the Aanhatian distence
* to each werlez s en sppreximation fo (he scinal dislance.
[J

float alphald], distf4], do1, d23 ;

-float 3 ;]

dist{o] == (v]0}.x>0.) ! v[0].x : ~v]0]x ;

distjo] +== {v[0].y>0.) ! v[0]y : ~v[0)y ;

dist[t] = (v[1}x>0.) P vt]x : ~v]))x ;

dist]l] 4= (v]1]y>0.) 1 v{l}y 2 =vlt}y ;

dist]2] = (v]2]x>0.) ! v]2)x : —v|%x;

dist[2] += (v|2].y>0) ? |2y : =v|2}y ;

dist3] = (v]3].x>0) ? w3 x ¢ —v[qx ;

dist3] +e= (v[3]y>0) ? v[3]y : ~v]3]y ;

d01 = distfo} * dist]l] ;

423 = distf2] ¢ dist|3] ;

FE N CON~)

5,239,624
35 36
alpbafo} = 423 * dist]1] ;
alphaft] = 423 * distfo] ;
alpha[2] == dOI ¢ dist]3] ;
alpba[3] == do1 ¢ dist]? ;
g == alphal] * v[0j.2 ;
3 4= slpha1] * v|i]x ;
3 4= alphaf2] * v[2]s ;
3 += alpha[3] * v[3|x ;
3 /= alphaju] + alphali] + alpbal2] + alphaly] ;
Letp++ ;
return 2 ;

#1f GOURAUD

gouraud(v,mp.vp)
reglster struet xyt v[4] ;
reglster struct mpoly *mp ;
reglster struct visiblepoint *vp ;

gouraud

{
. .
® Interpolate weing Shepard's method. Use the Monhatlon distence
:lo tach veries o8 an epprozimation lo the scdus! distance.
fioat alphalt], sum, aipbasum, dist[4]. dOI, d23 ;
distjo] == {¥[0].x>0) ? vjo}.x : ~v[0].x ;
dist{o] 4= (v]o].y>0) ? v[oly : —v{0]y ;
dist{y] = (v[1]x>0) ? v{l].x : ~v])]x ;
distfl] += (v[1)].y>0) ? vji}.y : =v|i}y ;
dist{y] = (v[2Jx>0) T v[2fx : —v]2x ;
dist|2] 4m= (v]2].y>0) ? vy ¢ =v[2y ;
distj3] == (v[3].x>0) ? v]3|.x : =¥]3]x ;
dist[3] 4= (v[3].y>0.) ? {3}y : ~v[3]y ;
dol = dist[0} * dist|1} ;
d23 = distj2] ¢ dist]y] ;
alpbajo] = d23 ¢ dist
slphall] = 423 ¢ dist
alpha(2] == 401 * dist
alphaf3] = do1 * dist|2} ;
alpbasem = alphal0] + alpha{l] + slpbal?} + alpha{y ; -
sum == alphal0] * mp—>color[0].r ;
sum += alpba|l] * mp~>coloril]s ;
sum += alphal?] * mp—>ecolor[]t ;
sum +w= alpba{3] * mp—>color{d]r ;
vp->eolor.r = sumfalphasum ;
sum == alpba]t] * mp—>colot]0).
sum +w= alpha{l] * mp->color|l
sum += alpbaj2] * mp~> color|2
sum +w= alpha[3] * mp—>color]3
vp->color.g = sumfalpbasum ;
sum == alpbal0] * mp—>colort
sum <= alphall] ®* mp~Dcolor
sum += alpha|?] * mp—>color
sum +== alpha]3] * mp—>color
vp—->color.b == sum/alpbasam ;
sum == alphal0] * mp—>>trans]
sum 4w alphai] * mp—>trans
2]
3]

w.geurend

.
'

B G O e

.e ws =

[N ERNC 3

-e me me *°

sum +w= alpba{2] * mp—>tran
sum +== alpha{3] * mp~>trans
vp~Dtranst == sum/falphasum ;
sum == slphaj0] * mp—>trans0}.
sum 4= alpha]t] * mp—>transfl
sum +e= alpha[2] ¢ mp- > trans{2]
sum 4= alpha[3] * mp->trany|
vp~->lrans g == sum/alphasum ;
sum = alphalt] * mp—>transin].
sum +w= 3lphaft] ¢ mp=>transl
sum +== alphaj2] ¢ mp—>trans|?
sum 4w nlp‘n . mp-—)(':n :
vp=>transh == sum/alphasum ;

3 -~
- e g ™

- as we

X=X

oo T
.

)
#endlf GOURAUD

static sample (nsample, mp, v} sample
Int asample ;

5,239,624
37
register struct mpoly *mp ;
register struct xy3 v[4] ;

register struct visiblepoint *vp ;
register Int inside ;
fioat 3 ;
/* If the micropolygon erosses the hither or yon plane during this
* freme, ste if it crosses it for this sample
LJ

#if MOTIONBLUR && !GLOSS
It (mp—>fag.hitheryoocromisg &£& mp—>Bag.moving) {
float tmin, max ;
It (vjo)x < vjifa) {
I (e < o) {
amin == (v[Dl.z < v[2a} ! o[0)z : v]2a
smax = (v[i}2 > v{3.2) ? v]1)s : of3s;

else { .
smin = (vjolz < v{3}z) T vjols : |3z ;
wmax = (v|t].2 > v[2a) P vji)x : v[Rs;

{

i (v < [3]s) {
amis s (v)i]z < v[%a) T ovit]x : v|Ys
tmax = (VIOI.Y: > v[3a) ? vjofa ¢ |3 ;

else {
tmin = (v]t]2 < v[Y2) P oft]s 3]
smax = (v{o]2 > v|2].2) ? vos : v[Y2;
! '
A (smin<ilitber 11 zmax>Yon) goto Outside ;
) X
#endif MOTIONBLUR &2 IGLOSS
® The snside lest has been unrolled for speed. This test wanally tskes
® & comparisons end brenches, 4 mulliplications, and 1-8 essignments.
® 5 Jf vertices 0 end £ have different y asigne, then both

depending on the sign of vorler 1.

drpending on the sign of werlez 3.
> Otherwise, if verlices 0 end £ heve the seme sign, then

* 6 & 8 5 & 88

® et iff we encounlered an odd number of positive £ crossings.
L)
joside = 0 ;
¥ (foly > 00) {
¥ vy < 00) {
¥ (v{i]y < 0.0)
{ W (v[tfx*v]oly > v]'|y*v]0]x) inside
eloe
{ o (v[x*[1ly > v]2.yv])]x) inside
i (v]3]y < 0.0)
{ o (v[3]x°¥[0).y > v[3].y°"|0].x} inside

© ![i (s]2)xv3ly > v[y*v[3x) inside == Siaside; }

else {
I {v]tly < 00) {
I {(v{1]x*v{oly > v]1].yviof.x} inside
it (s[t]x*v[2ly > v[1]).y°v]|2.x) inside

“imside;)

“aside;)

“iaside; }

“inside;
“imside;

ir (v3)y < 00) {
It (v|2].x*v[oly > v[3].y*+[0]x) inside

“inside;
i (vi3]x*v|2y > v{3]y*v]2.x) inside

“inside;

> The line from verlez 1 lo cither verlez 0 or m(cx 2 crosses the x ezis,

> The line from verlez & to either verfcz 0 or verfcz 2 crosnes the z exis,

> The lines from vertez 1 to verlez 0 end vertex 2 eithcr bolh cross the =z
azis or both do mol cross the z azis, drpending on the aign of wrriex 1.

> The lines Jrom verlex 3 1o werlez 0 and vertez 2 either both cross the =2
szis or both do mol crors the x szir, depending on the sign of verlex 3.

? For every line thal crosecs the 3 azis, we lest the sign of the eroasing

* and loggle "inaide® if the croesing is posilive. Al the end, "inside®

wsample

wtample

5,239,624
39 40
else {)
if (vj2ly > 00) (
i (v1]y > 0.0)
be{ i (v]t]. x'v[O]y < v|i]y*vjo]. x) inside = “iaside; }
{v (v|2] 'r]l]y < v[2] y*|i]x) inside
 (vPily -
{1 (v|3] x le]y < v[3).y*v|rf.x) inside m Tiaside;) .

“iaside;)

1se .
{1 (v[2x*¥[3ly < v[2y*v[3]x) inside we Cimside;)

eloe {
¥ (+Ji]y > 00) {
it (vJ1]x*v[0]y < v[1]ys{0}x) inside
it (v[tfxv]2)y < v[i]y*v[2].x) inside

“iaside;
“taside;

lr(vmy > 00} {
I (v[3]x*v[oly < v[3]y°v[0].x} inside e Timside;
o (v[3]x"v[2)y < v[3].y*v[2]x) ipside e Tiaside;

(]

®.1f the sample point ie inside the polygon, end the micropolygon
* crosses the hither or yon plane, interpolate lo find the velue of
® ; ot the sample point. Teat whether this 3 i3 between the Aither
* gnd yon planes.

[]

Ir (inside} goto Outside ;

1t (mp—> Rag hitheryoncrosing) (
1 = lerpt {v) ;
it (x<Hlither 11 3> Yon) goto Outside ;

it ('VisFreeList) {
Int vismalloced, i ;
VisFrecList = (struet visiblepoint ®) malloc ((unsigoed)VisMallocSize) ;
vismalloced == VisMallocSize/alzeof{struct visiblepoint) ;
NVis 4= visinalloced ;
for {i=1, vp=VisFreeList; i<vismalloced; vp++, i++) {
vyp—>pext m vp+l ;

vyp=2>next = 0 ;

}

vp »= VisFreelList ;

VisFreeList = VisFreeList—->next ;

NVislalse++ ;

1f (NVisloUse> NVishMaxUsed) NVishaxUsed=NVislaUse ;

#1If CSG
vp—Dcsgiree = mp—csglree ;
vp—>>csgpode s= mp—>csgnode ;

#endlf CSG .
vp—>glassbackopacity = mp—>glassbackopacity ;
vp=>8ag = mp->lag ;

Y (mp—>Bag bitheryoncrossing) {
Yp—>mipz = g ;
Yp=-Dmaxt = 3 ;
wp—>Bag.lerpdone == | ;

eloe {
yp—>mior m mp—>minz ;
Yp=>max: == mp~>max.g ;
vp—>flag.lerpdone = 0 ;

L:opy ((char *}v(char *}rp—Dv slseofivp-Dv)) ;
#1t GOURAUD
if {mp—>Mfag gourand)
gouraud {v,mp,vp) ;
ebe {
wp->color == mp—>colorf0] ;
vp=>lrans = mp->transf] ;

)

~sample

5,239,624 ,
41 42
else i
vp—2>color == mp->color ;
Yp—>trans == mp—>trans ;
#endif GOURAUD
vp—>next = Point|nsample] ;
ioiut{nsample] = vp ;
Hit+4+ ;
return ;

Outside:
Miss++ ;
ceturn ;

' bil reversal, but mapped back onto 0n */

permute(i,e) {
reglster Int jab; : permule
j=0;
for(bm];b4b<nb+mbd) ; °
for(am1b> miatomsbfm2)
¥ (1=b>m0) (i-wmb; jui)
if (j> =) jmatl-j;
return j;

tablesisit(nx,ny) { ’ {ablesinit
register Int 1, j, 8 ;
Intx, 5, 4 1;
float dx, dy, dt, sum ;
int width ;

NS = ax’sy;
SamplesPerBucket == PixelsPerBucket * NS ;
width = 1 4 2 * Border ;

. /® malloc room for tebles */

It (Location) frec{{char ®)Location) ;

It (Filter) free((char *)Filter) ;

I (Lens) free((char *)Lens) ;

Localion == (struct xy *)malloc(NS*sizeof{struct xy)) ;
Filter = (flost *}malloc{NS*width*width*sizeofifoat)) ;
Leas = {struct xy *Jmalloc(NS*sizeofistruct xy)) ;

/* Calculate toble of random numbers %/
¥ (JitterFlag) (

MaxXJitter == 1.[ox;

MaxYJitter == 1./ny;

for (s=0; s<NJTTER; s+4) {
Xlitter|s] = drand{}/nx ;
Ylitter[s] == drand{)/ny ;
Thitter]s] = drand(}/NS ;
LXJitter]s] = drand(}/nx ;
LYlJitter]s] == drand()/oy ;

}
MaxXJitter —e= (R0at)0.000009 ;
MaxYlitter —= (Rost)0.000909 ;
)
ebe {
MaxXJitter = 0.5/ax;
MaxY Jitter = 0.5/ny;
for (s=0; s<NJIUTTER; s44) {
XJitter]s] = 0.5/nx ;
Ylitter|s] = 0.5/ny ;
Tlitter]s] = 0.5/NS ;
LXJitter[s] = 0.5/ax ;
LYlitter] = 0.5/ny ;

) .

MaxXJittee —m= (font)0.999299 ;

MaxY Jitter —w= (float)0.000009 ;
)

/* Celeulate locations %/ ek
for (sm0, x=0; x<ux; x44) {
for (y=0; y<»y; y++, 4+ {
t=permute{e, NS);

5,239,624

43

Location|t].x we x / (float)nx ;
Location|t].y == y / (Boat)oy ;

}

/® Create [filter toble. */

/* Caleulate filter values for the center of cach sempling region. V4

sum == 00 ;
for (s=0, !—0; s<NS; s+4) {
for (j=0; j<width; j++) {
for (im=0; i<width; f++, i++) {
dx = Locationls].x + 0.5/nx = (i — Border +.5) ;
dy = Location|s]y + 0.8/py — {j — Border 4.5} ;
Filter]f] == (°FiltrtRoutine|[FilterType]{dx,dy) ;
. sum += Filter]f] ;
)
)
}

/* Normalize [filler %/
for (i=0; i<NS*width®width; l++)
Fllur“ /— wum ;

/* Leno. This is a kludge for now - wses & square lens %/
for (sm0; s<NS; s++
Leas]s|.x = Location|s].x ;
Lensjs].y == Location]s].y ;

static freclist (vp)
reglster struct visiblepoint *vp ;
{
reglster struct visiblepoint *p ;
reglster Int » ;

I ('vp) return ;

for (pm=vp, a=el; p—>ocxt; 044, pmp—>next) ;
p—>next s VisFreeList ;

NVisloUse —m » ;

VisFreeList == vp ;

static freepoints{)

reglater Int » ;

reglater struet visiblepoint **head ;

for (n=0, head=Point; l<S:mplcsl"erDuckel bead«H-. n+4) {
freelist (*head) ;

#1ir CSG
VA ecmreereeeee CSG code */

#define CSGDiflerenceOp 1
#define CSGintersectionOp 2 .
#define CSGUpionOp 3

#define MAXTREE 64
statlc struet CSGoode *Tree]MAXTREE}:

static int CSGNewTrec{n,tree)
Int »;
struct CSGnode Stree;

i (n>—MAXTREB) {
fprint! (stderr, “Maximum mumber. of trecs exceeded.\a"} ;
Errot() ;

Sreelist

Jreepoints

«Jreepoints

CSGNeuwTree

5,239,624
45 46

return;

Treejn] = tree;

' c(tatk iot CSGResolve{) CSGResolve

Int ntree ;

reglster Int » ;

regiater strucet visiblepoint **vp ;

register struct visiblepoiot *resolvedlist, *front, *vis ;
struct visiblepoint *treelist ;

struct visiblepoint ®extract_esgtree{), *mergelistd);
struet visiblepoint *extract_esgnode{), *sortfront() ;

for {n=0, vyp=Doint; s <SamplesPerBucket; vp++, n++) {
vis == 0 ;
while (front=esortfront({vp)} {
I {front—> fiag pantshack) {
Svp w= fronl—>nesl ;
front->next = 0 ;
freelist(front) ;
front == sortfront{vp) ;
If (front &L front—>Aag.lorsohack) {
*vp == front—>next ;
front—>uext = O ;
freelist(front) ;

’

else If (froot~>csgnode) { : —CSCRerelve
stree == front—Dcsgtree ;
reelist s extract_cegtree (atiee, vp) ;
esg_resolve_tree (Tree|ntrer], 0, Dtreelist) ;
vesolvedlist = extract_esgnode (0, Ltreelist) ;
freelist (Lreelist) ;
*vp = mergelists (resolvedlist,*vp) ;

else {

®vp = front—>sext ;

¥ (via)
front~>color.t ®== vis—>transst ;
front—>colorg *sm vis—Dlransg ;
front—>color.b *s= vis—>transh ;
front—>color.r +m vis—>color.r ;
froat—>color.g +m vis—~Dcolorg ;
fronl—=>color.b +m vis~>eolor.b ;
front—>traps.t *me vis—Dtranst ;
front—=>lrans.g *=e vis—Stramsg ;
front—>trans.b *== vis—>tansb ;

front—>next w= vis ;
vis = front ;
A (vis—>fag glasshack && *vp) {
Soat alpka, comp ;)
front == sortfrost{vp) ; -
alpha = vis— D> glashackopacity ;
comp = vis—Dcolor.r ;
vis—>color.t ®s= alpha ;
vis—>color.r 4= (1—alpba) * comp * front—>color.r ;
comp a= vis—Dcolor.g :
vis~>color.g ®== alpha ;
vis—>color.g 4w (1~alpha) * comp ® froat—>eolorg ;
comp = vis—>color.b ;
vis—=>color.b *s= alpha ;
vis—>color.b 4 {i~alphs) ® comp * front—->color.b ;

)
It (vis—>flag.opaque) bresk ;
®vp = mergelists (vis, ®vp) ;

)
)

5,239,624
47

static eng_resolve_surlnee (lists, listd, id, op)
regirler struet visiblepoint *hista, *listb ;
int id, op ;

segister Int o, b ;

/® Go through two sorted lists of points, determining which points are
® gctually on the aurface sccording lo the specificd esg operalor.
® Mark the poinis that are on the aurface with the spreificd mode id.
® A point from listh is en the surface if "s® is acl; & point from
® lista is on the surface is "b" is set .

* > For the wnion opcrator, accept points from lista iff we are oslside
of volume b and sceept points from listh iff we are outside of
volume 8. Since we aré inilially outside of both volemes, "a” and
"b" are both inilially Gue,

> For the intersection operator, sccepl points from ome Kst iff we
are inside the other volume. Since we sre imitially not jaside
either volume, 3" and “b" are botb iaitially false.

> For the difference operator (2 mious b}, accept points from lista
iff we are outside of volume b and accept points from listb iff
we ate inside volume 5. Since we are initially outside of b aad
mot inside a, “b" is initially Uve and ”s” is imitially false,

> For all three operators, loggle "a° or “b" when we pass throwgh
ooe of the surfaces of 8 or b respectively.

e & & & 5 & » & 5 & 5O

L
—

asbm=0;
switch {np) {

ease CSGUnionOp: aw T
ease CSGDilicrenceOp: b= "b;
case CSGlntersectionOp: bresk ; :

)

while (lista && fistb) |
A (lista— >minz < listb—>minz) {
’ If (b) lista—Desgnode == id ;
lista m= lista—>next ;
A= Ta :
)
alse {
if (3) Jistb—>csgnode == id ;
listb = listb—>wmext ;
b= "b; ‘
)

)
i (b)

for (ilistalistamlista—> pext) lista—~>csgoode == id ;
1f (a)

for (Jlisth;listb==listb~> pext) listb—>esgnode = id ;

static struct visiblepoint *extract_esgnode (nodeid, list)
int nodeid ;
reglster struct visiblepoiot **list ;

reglater struct visiblepoint *thisid, *motthisid, *vp, *next ;

J* Extract all points with the specificd mode mumber from the lisl.
® Reiurn & pointer do the head of s new lial confaining only the
® cxiracied points.

.
thisid a= 0 ;
sotthisid = 0 ;
mext == list ;

while (vpmeaext) {

next s= vp—>next ;

Y (vp—->esgnode memm nodeid) {
yp—>next m= thisid ;
thisid e vp ;

)

ele {
vp=>next = solthisid ;
sotthisid = vp ;

48

esg_resolve_s .- -

wttg resolue, eurface

exrlracl_csgnode

~t2iracl_cepnude

5,239,624
49 ' 50
} .
}

Slist = potthisid ;
return thisid ;

static struct visiblepoint “extract_csgtree (stree, List) ’ exrlract_csglree
Int atree ; . . -

register struet visiblepoint **list ;
reglster struct visiblepoint *intree, *notintree, *vp, ‘l‘ext H

intree m= olintree == 0 ;
vp = ®list ;
while {vp) {

wext == yp—-Dnext ;

If (vp=>cagtree wmam mtree)
vp-Duext = jalree ;
intree = vp ;

}

else {
vp—>sext == gotintree ;
nolintree == vp ;

)

vp == pext ;

}

Sfist == motintree ;
return intree ;

static struct visiblepoint *findfront{list) findfront
reglater struct visiblepoint *list; .

reglater struct visiblepoint *froat, *vp ;

/° This routine returna @ pointer to the frontmost point of e list

* of visibicpoints. The 3 value of each point is alored e lhe

® minimum end mazrimum z velues of its micropolygon. The exeet

® 1 value i3 only calewlated (by inlerpolation) if it s meeded.

® The exact value is etored in both the minimem and mazimwm 3 Jields,
* > Find the point ‘front’ with the smallcst minimum &,

® > If that point has an inlerpolsted 3 valve, were done.

® > If that point's maximum 2 value is in fromt of the minimum 3

® of every other point, we're done.

* > Otherwise we go through the list again, this time wsing the

¢ exact values of 1 calculaled by interpolation.
L

wfind fr
Af (list) return O ; findfront

for (frontmevpmlist; vp; vpmvp—>next)
If (vp—->mins < froot—>minz)
front == vp ;

if (front—>Bag.letpdone) goto Done ;

for (vpmlist; vp; vpmvp—>next)
I (vplefront &2 vp—>minz<front—>max:) goto Lerp;
goto Done;

Lerp:
froat~>mins = froot—>maxt = Jerp(front—>v) ;
front—>fag.Jerpdone =] ;
for {vpmlist; vp; vpmvp—>aext) {
if (vp~>minz < front—>minz) {
I (vp->8ag.lerpdone)
front = vp ;
vp—>mint == vyp—>maxs = lerpilvp~>v) ;
vp—>Baglerpdose = 1 ;
If (vp—>min: < front—>minz)
front = vp ;

5,239,624
51

Doze:
return frost ;

static slruct visiblepoint *mergelisty(a,b)
reglater struet visiblepoint *a, *b ;

reglister struct visiblepoint *p ;

If (fa) seturn b ;
If ('b) return s ;

for (pw=a; p—>pext; pm=p~>uext} ;
p-Duext = b ;
relurn s;

static esg_resolve_tree (node, id, list)
reglster struet CSGnode *sode ;
Int id :
reglster struct visiblepoint *“list ;

struct visiblepoint ‘list0, *list1 ;
struct visiblepoiol ®extract_csgmode{), *mergelists() ;

3t (node—>child[n]} esg_resolve_tree (vode—>child[0], ande—>id]0], list);
A {oode~>child[t]) csg_resolve_tree (node—>child|l], node—>id]1], Ket);
list0 == extract_cegnode (sode~>id[o], list) ;
listl == extract_csgpode (node—>id{l], list) ;
A (liso 1) list1) |

If (list0) sortlist (£list0) ;

I (list1) soctlist (&listd) ;

csg_resolve_surface {list0, list], id, mode~>o0p) ;

Slist m= mergelists (list0,*list) ;

*jist == mergelists (list1,%list) ;

static struct visiblepoinl *sortfrost{bead)
register struct visiblepoiot **bead;

reglater struct visiblepoint *prev, *temp, ®vp, *front ;

® (*head) points to a list of wisitle points. This routine puls
® the frontmost poinl et the head of the list.
.

If (!*head) return O ;
front == findfront{*kead) ;
for (prevew *head, ypmprev—next; vp; prevamvp, vpmyp—Saext) {
i (vpem=front) {
ptev—>next == [ront—>aext ;
front—>next == ®head ;
®head == [fromt ;
return ®bead ;

)

return *head ;

static sortlist {list)
reglater struct visiblepoint *%list ;

W ((*list)=>next}) {
(vold) sortfront (list) ;
sortlist (£((*list)~>aext)) ;

52

mergclists

csg_resolve_tree

~L£og, reesive_tree

sort front

sorllist

5,239,624
§3 54
Felse

static int CSGNewTree()(;} CSGNeuTree
tatic int CSGResolve{){; CS :
o':’:“l;csc ve()(;) CSGResolve
/* ssvish 1.9 85/05/20 °/

#include <reyesh>

struct visSags {
unsigned moving : I ;
unsigned opaque : 1 ;
unsigned cubicmolion : 1 ;
unsigned matte : 1 ;
unsigned bitberyoncrossing : 1 ;
wasigned kerpdose : 1 ;
unsigned gouraud : 1 ;
unsigned pantshack : 1
unalgned torsoback : 1
unsigned glamback : 1
I &

struet mpoly { N .
struet mpoly *aext ;
int misx, mipy, maxx, maxy ;
struct xy: min, max ;
struct xyz v{4] ;
#1If MOTIONBLUR
struct xy1: speed|4] ;
#if CUBICMOTION s
struct xy: speed?|d] ;
- mtroet xy1 speed3t] ;
fendif CUBICMOTION
#endlif MOTIONBLUR
%1 GOURAUD
struet color color[4] :
struct color transfd] ;
felse
struct eolor eolor ;
struct color trans ;
Wendlf GOURAUD
#if CSG
short esglree, esgnode ;
¢ ndif CSG
! DEPTHOFFIELD
struct xy dofborder ;
#endif DEPTHOFFIELD
float glasshackopacity ;
struct visflags fiag ;
L

.
.
.
’
.

catcrn float Dofx_a, Dolx b, Doly_ a, Doly b ;
extern Int PinllcleCamera ;

5,239,624
55 :
APPENDIX B

Copyright 1985 Lucasfilm Ltd.

[/u0/tom/patent/pray.c [/u0/tom/patent/pray.c
, ...lighthit
if (hitlight le NULL)
return(hitslphal);
retuen(-1.);
]ispemrly(oldny.mudhpenionn;k) . disper.seray

vector oldray;
double maxdispersionangle;

double phi.theta,rho;

double ab.evay,3;

phi = drand(} «drand({) emaxdispersionangle;
theta = drand() 2 P;

s = oldray i:
b = oldray|t}:
€ = oldray(2);
tho = sqry{{double)(s mas+b i)}

s = 3/tho; b w b/frho; ¢ o= ¢/the;
2 w rtho sin{phi) cos{theta);

y == rho sin{phi) ain{theta);

3 == thoxos{phi);

it {(v = sqri{{double}(bb+ex)) t= 0}

‘oldray
oldray|l
oldray|2
}

- (x» ¢ 34)
= (y=x -ban + baw)/y;
= (-by - cun + eno)/y;

elee -

oldrayll| e y;

oldray[0] w 3op;
oldray[?| e -xm;

struct color

trace{viewing, level time)
register struct ray oviewing;
fBoat time;

Louble alphs beta;

struct ray newray;

doublle diffuse, vdoin, kI, kn, specolar, reflectionlength;
struct color tracecolor, viewcolor, rpherecolor;
double sphererellectivity spherebump;

veclor normsl, incoming, reflection, temprect, center;
double radius;

register struct sphere hp;

register struct light dptr;

matriz tempmatrix;

double spinangle;

[printf(traee(ray {155 L L. TG TN,
wewing-> endpeint[V),

vicwing-> endpointfl],

sicwing-D> endpeintf?),

wiewing-D directionfU],

siewing-> dircction]l],

viewing-> divcetionft],

beocltime);0f

alphs = spherehit(viewing limeflevelmm0] L& firanslucencyray);
‘L;ub:- lighthiy{viewing time);
ta D 0) k& {(siph [
« tﬂun,n(hiui;!‘:{-;l:b]f) B e < siphsi)
¥ falpha < 0.)
return(nulicelor);
viewcolor.ted -
vieweolor.grn =
vieweolor.bly w ©0;
viewcolor.all w §.;
bhp == hitsphere;
ViAddLerp(alpha,viewing-> endpoint,vieming- > direction,newray. endpoint);

FindCenter{hp,time,center);
radius == hp-Dradivy,

) /1adivs;
} Jeadius;

normalj0] == {newray.endpoint|0j-center
t
2]) /radius;

aormalil] e= (newrsy endpoint|l]-crnter
normall2l == {newray.endpoint|2|-center
normalfl) = 1

5,239,624
§7
I pul mormal throwgh nverse transformation in order do estrect

cru'p'nl positien on sphere.

that eriginal posstion io then weed 1o lul up lhe porameters
Jor the ophere .

o/
double duration;
struct nonmnt 'npu-
mptr = ly-)mptr
VaCopy(normal.temprect);
MxVuuvMuluply(l.empvu\,lw—>\4 umpvu\)'
while (mptr}
if {mplr->starttime >ee time) break;
MxVectorMultiply(tempreet, mptr-> MRIMR2, tempreet);
¥ (mptr->mptr)
it {mpte->mptr->starttime Dw= time)
duration == lime - mptir->ntarttime;
elre
W deration = mplr->mptr->oarttime = mptr->starttime;
else
duration = time ~ mptr-D>starttime;
spinangle e MiDegrees{duration sViLength{mptr-> transiate] /hp-> radius);
MzRetate(spinangle,”s” tempmatris);
MxVectorMultiply(tempreet tempmatriz temprect);
MaVectorhultiply(tempreet,mptr-> IR2IR I temprect);
mplr e mpu->mptr;
)
Io

sow lempoeel conteins the orginel poeition of thie endpoint §n the
pecture mep for thio aphere.
L)
spherebump == hp-> phong;
i (ADS{tempvect|?]) < hallstripewidih)

spherecolor e hp-Dsuripecolor;
spherereflectivity w spherecolor.alf;

elre
g ((ADS(u;npvutlﬂ) <€ alfringwidih)}

]*% tc -go ¢ 5 cook.s boundiphere.s G ~lrpac ~dpicie -ltkp -loa ~lmz ~lam ~Im
. .

#include <ntdioh>
ginclude <aarg. A
finclude <mathh>
dinclude <picio.hD>
finclude <rpac.h>
#include <ikehack.h>
dinclude <blissh>
finclude <AixMatrizh>
ginclude <BuniOpen.h>

dinclude <rrandh> A
#include <ViVector.h>

¢$define S5 84 \
‘g defline XSIZE $12 ‘
¢deline YSIZE 488

Int spizx == XSIZE:
int sply = YSIZE;
Int ppix = XSIZE;
tnt pply = YSIZE;
int pps = |;
Int mize = 0;
int pp = SS;

Fdefine VPIX 7888352458 [o = 1)1, wrtical belght of o piret of
¢#define MAXLEVEL 1 . .
¢define NSPUERE 100

Int translucencyray == FALSE;

double Reldofview == 30.;
veclor viewpoing;
matrix um:lnu,muvnaomalmr

double halfstripewidth - 4122

double hallringwidth - 85

double linethickness - 05;

double ringradivg A4

]* ringradine = oqrf]- {h![ru’nlrl+l-ulh¢hrn) 2) o/

59

int dms = 0;

Int yrtart == &;
fnt yend == 100000;
setyniast{)

ystard == stoi(aargy(1});
yend o= atoi{aargv[2));
it (yend < ystan)

5,239,624

lprinlﬂbnldcn,'hd y bownds\n'};

esiy1);
} b
int debug == FALSE;
setdebugl) (debug = TRUE;)
struct ukv‘
_double red, grn, bly, olf;

|5
struct color nullcolor == (0.0.0.0.):

struct color ivorycolor e {0.85,0.85,0.55,0.8);

double ivorybump = §000.;
double iveryreflectivity = 0.8;

etruet color blackcolor w= (0.05,0.05,0.05,1.5;

double blackbump == 1000,;
double blackrefiectivity == 0.8;

struct window (int minx,maxz,minymary;);

struct movement

{

matrix MRIMR2IR2IRY;
double starttime;

vector transiate;

struct movement emptr;

T
struet sphere
veclor center; -

double radius;
matriz M;

struet color outsidecolor,stripecolor;

struct movement emptr;
double refractiveindes;
double transmitivity;
double specularity;
double phong; .
double tefiectiondispersion;

double transmissiondispersion;

Int active;
struct window w;

© BuniPuType buniptr;
Int [basize,fbysise;

}
sphere[NSPIIERE];
struct sphere asphere we sphere;

#define NLICHT $0
struet light

vector Joeation0;
double intensity0;
veetor bocationd;
double intensityl;
double eadius;
struct color rgh;

li;hl(NLlGll?ﬂ;

struct light elight == light;
double ambient;

struct eay

veelor endpoint,direction;
struct sphere ehitaphere;
struct light ehitlighy;
#define EPSILON 1e-0

FindCtnkr(:pu,time,t;nuv)
" struct sphere wpir;
double time;

veclor center;

1 refractine indes of

[[ractiondl intensity of transmited eogs of
[* emount. of epecelar reflection of
/¢ speculer bump width {Phong esponest) e/

60

selystart

seldebug

FindCenler

5,239,624
61 | 62

double duration;
struct movement empir;

VxCopy(sptr-> center,center);
mptr e gpir-D>mpir;
while (mptr)

M (mptr->atarttime > time) break;

i (mpte->mptr) -
W (mptr->mptr->staritime > time)
" duration = time -~ mpts- > otarttime;
thoe

. durstion == mptr-D> mptr->stasttime - mpir->starttime;
alse . R :
durstion = Lime = mptr->starttime;
VxAddLup(duntiou,cenm,mph-)lnmlnk,cuut);

Mmptr = mptr<d> mptr; .

double . .
spherehit{oldray, time,leve)0}) ‘sphcrchxl
register struct ray eoldray; ’

flost time; .

register struct sphere aptr;
double hitalpha;

double alphs, dirceiminant, o, b, ¢
veclor newendpoint;

veetor eenter;

double radius;

[oprint](C opherehitfray:(S/, 51, 51, 1,5, %) A",
eldrag->endpointfU] oldray-D> endpoint[i] oldrap.> endpeint[2),
oldray-> direction[V] eldrag-> directionl], oldrap-> direction o) time); e}

J° Thiv routine trice to find ¢ peint en the sphere aptr and the oldray,
Using elpha a0 the eatent of the rey bryend oldray->endpoint,
¢ quadratic vn elphe con be formed whose corflicients a b ¢ ane
o8 computed belew,

o/

hitsphere == NULL;
» = ViDot(oldray-> direction,oldray- > direction);
for (sptr =« sphete; sptr lee erphere; apies +)

i (teveld ll $pir- active)

FindCenter{sptr.time center);
tadius == 9plr-> radivs;

VlSublutl.(oldny->endpninl.nn!:r.unndpoinl):
b = 2+ViDot{newrndpaint,oldray-> ditection);
¢ = ViDolnewendpoint,newendpoint)-radiws vadive;
¥ ((discriminant = beb - genx)<.)
tontinue;

-..apherehit
discriminant = sqri{(double)discriminant);
alphs = (~b+ﬁxﬁmﬁut)ﬂ2ﬁ);
* if (EPSILON < alphs &R
{hitsphere eww NULL [alpha < hitalpha))

bitalphs == alpha;
;i-wkm - epts;

alphas = {-b-discriminant) /{2),
It (EPSILON < alphs &8
(l\il.lp:nn wem NULL § alphs < bitslphs))

bitalpha == alpha;
bitsphere == aptr;

)

if (hitsphere lw NULL}
returnihitalpha);
veturn{-1.);

double :) .
Tighthit(oldray.time) A lighthit
register struet tay soldray; ’ ’ :

Bost dime; .

register struct light -dpis;
double hitalpha;
double alpha, disctiminant, », b, ¢

mapr
mapy

mapz
mapy

35,239,624
63

vector mewendpoing;
veelor center;
double radius;

hitlight «= NULL;
3 = VaDot{oldray- > direction,oldray-> direction);
for (Iptr == Ught; iptr les elight; fptr++)

Viablerp{time,Ipte-> location0,Iptr-> Jocstion) center);
vadius = Iptr-Dradiug
VzSubteact{oldray-> endpoint center,newendpoint);
b == 24VzDot{newendpoinLoldray-> direction);
¢ = ViDol{newendpoint.newendpoint)-radius wadius;
i {(discriminant = b - 4 x)<0.)

continue;
discriminant == sqrt{{double)discriminant);

alphs = (-badiscriminamt}/(2 o)’
it (EPSILON < alphs L&
(hiu;;«n waes NULL | slpha < hitalpha)

hitalpha e alpha;
;illi;ht - jptr;

alphs = (-b-discriminant} /(2 a);
it (EPSILON < alphs &
(hitsphere mwe NULL | alphs < hitalphs))

hitalphs = alpha;
;iﬂi;ht - lpir;

spherecolor s= hp->ewtsidetolor;
spherereflectivity s spherecolor.all;

else :
it (ABS{tempvert]?]) < ballringwidih+ Bnethickness)

else

It (hp->ouusidecolot.red fae hp-Dstripecolor.red)

spherecolor e blackeolor;
spherereflectivity w blackreRectivity;
spherebump == blackbump;

)

ebse

spherecolor = iverycolor;
spheretefiectivity m jveryrefectivity;
spherebump &= frerybump;

s (hp->h:nipu)

int mapz,mapy;
RUBAPixelType RCBA;

i‘f (temprectis] > 0)

hp-> Doasite {1 4 (atan{tempvect0] ftempvect|2]) /(P1/2)) /tingradins) /2;
hp->fbysiseq{1 - hun(umpn:lll,[/umpndl?])/(Pl/2))/lin;ndiu)/&

ebse

‘inp-)ﬂnxiu {1 + (il:n(umpvnt}gl/tempn:t[’.‘l)/(l"l/2))/lin;radiut)l'-’:
hp->fbysizeql - (ann(umpvulll}[/umpveﬂ[ﬂl)/(Pl[2))/:in‘ndiul)[:

SetBuniY{hp-> buniptr, mapy);
SetBuniX{hp- > buniptr,mapz);
GetBuniRCBA{hp-> buniptr, kRGDA);
spherecolor.ted = RGBARed £4095.;
spherecolorgrn w» RGDA.Green [1095.;
spherecolor.blu = RGBABiue /4085,
spherereflectivity = RGDA Alpha /4095,
spherebump == 1000;

spherecalor = ivorycotor;
spherereflectivity e ivaryrefectivity;
spherebump ea jvorybump;

vdotn = ViDot(normal,viewing-> direction);
if (vdotn ‘> [B]

T..ltrace

5,239,624

65 66
VaNegate{normalnormal); '
;n = L /hp-Drelisctiveinder;

. else

{
vdotn == ovdotn;
kn = hp->reliactiveindes;
drace

}
Wrdota = 8)
VxScalarMultiply(1 /viol-n.v'le-in‘->Jinﬂion.innmin();
/¢ the only difference between the viewing dircetion and the incoming
veetor do this factor of I[vdetn, 1 over the oin of the engle

between the viewing oeetor sud the morma!
L)

if (vdotn mwm 0)

" VlCopy(vinin;->‘ineﬁu,uluﬁoa);

ehe
V:.Addl.crp(!.,incming.lom:l,ulcelion);

Jiapcmny(nﬂetlion.hp->nlﬂliuﬁqenion);
seflectionlength o= ViLength{reBection);

L]
® firet, get the Kghtoource componcnte
*

viewcolor.red ‘o= epherecolor.red sambient;
viewcolor.grn we sphereeolor.grn ambient;
viewcolor.blu = spherecolor.biv ambient;

for (iptr = fight; iptr le= elight; Ipir++)

double intensity;
veetor fighteenter;
vector random;
randomf)| = I;

for {;;)
tandom
‘random|l] w 2edrandi}-1;
random|2] = 2adrand()-1;

i (Vilength(random} <= 1) break;

- 2eadrand()-1;

VaScalarMultiply{lptr-> radivs,sandom.random);

Valerp{ lime.lpu->loealionb,lph-)louﬁonl.li;l\kenur);
VaAdd(lightcenter,random,newray.direction);
ViSubtract{newray. direction newray -endpoint,newray.direction);
VxNormalise{newray. direction,newray direction);

if (epherehit{Znewray time, FALSE) > 0.)
continue;
specular w VxDo!(nnuy.dineliun.nﬁeclion)/nﬁutienkn;lh;
if (specular < 0.) speeular == 0
*

o Plastic olert
.
intensity = Iptr-Dintensityd + time qlptr-Dintensity 1-Iptr- > intensity0);
[specalar w intenrity ¢ hp-Dapecalanty ¢ pevfopeesler, opherchump);o/
specular == hp-D>specularity # powlspeculsr, spherebump);
diffuse w= intrasity o VaDot(newray.direction,normal);
vieweolor.ted 4em specular 4 diffuse mpherecolor.red; ‘
vieweolor.gin 4e= specular + difluse spherecolor.grn;
viewcolor.blu 4= specular + difluse wpherecotor.bly;

} .
i (leve! e MAXLEVEL)
return|viewcolor);
*
¢ Now, the veflected component

L]
i (spherereRectivity te 0.)

{

doxble espf) alphe;

.frace

L)

/ VxCopy{refection.newray.dicection);
tracecolor == teace{knewray, levels I time);
viewcolur.red 4w tracecolor.sed sphererefectivity;
viewcolor.grn 4= traceeolor.grm sphererefectivity;
viewcolor.blu 4= tracecolor.blu sphererefectivity;

L]
5({-!’1: w opheredit(Encwray,time, FALSE] ¢ Vilengih{ncwrag.diveetion)) > 6}
vicwcolor.red —we opherecolor.redvambient eaphereeeflectivitysespf-alphe);

vieweolor.gra —am opherecolor.gracambicaterpherereficctivitysesp(-alpha);
sieweolor.ble ~ow opherecolorblucambicnt aphercecfiectivityscapi-slphe);

o/

5,239,624
67 68

.)
o New, the trenemiticd compenesnt

i (hp->tranemitivity tam 8. &% vdotn l= 0.)

VxAdd(incoming.normal,tempvect);
kl == kn ¢ kn o VxDot(mtemmg.mcﬂnm;) « ViDot{tempvect,temprect);
i >0)

k= 1. /sqri{{double)kl);
wewray.direction[0] == ki q{normsl
newray. dicection]l] e kf{normalf}
newray. direetion[2] e kfo{normai|?
newray.ditection[3] = 1,;

+mtemm; } - wermalll
+incoming(2]) - mormalj2};

+mtomm;l0]) - Mlmﬂ(ol

disperseray(newray direction,hp-> lu;mni-ionﬁsp!niol);

Joprintf(trace(ray:(E], 51, 561, 5E1, 5O Sof), 64, 5E1) <> °,

newrey. endpeintf0],

newrey.endpoint/fif,

nexrsy.endpoint/S),

newrey dircetionfU],

newrap direetionfl],

aevrey. dircetion/S),

level+ L time); o/

translucencyray = TRUE;
tracecolor em trace{l:newrsy, level time);

translucencyray = FALSE;

[epriniff [%],° cl,,rlAl drececalor.ecd traceeolor.gratracecelor.bln);e)
vieweolor.red 4= tracecolor.red shp-> transmitivity;
viewcolor.grn 4 es tracecolor grn dip- > transmitivity;
vieweolor.blu 4= Uracecolor.blu shp-> transmitivity;

return{vieweolor};

pri2(z}) ') pl'l 2
double x;

;elurn((im)(ls «drand(}+40R0. {x <0.10.:1. <atl.:x}));

double Fn = 0.0;
double focaldistance w 1.0;

struet color eyetrace(s, y, t)
double ¢, ¥, &
(

struet ray ray;
veetor screentarget.modeltarget focaltarget, direction;
double Slmplanedistance;

[eprintf(" eyetrace(5], nl. FINS 8,3.0);0f
screentarget]0] == x;
wereentarget|l] w y;
screentargeti2] we
screentarget{l] ==
MchclmMull|ply(urunlar;n inversenormaliser,modeltarget);
ViSubtract{modeltarget,viewpoint direction);

Rimplanedistance = ViLength{direction);
VxAddLerp{focaldistanee [Rlmplanedistance,viewpoint, direction, focaltarget);

vector random;
sandom[2] = O;
random{d] = 1;
tor ()

nndomr = 2ajrand()-1;
random|l] == 2edrandi)-1;
(Valength{random) <= 1) break;

VxSealarMultiply{Fa.sandom,random); .
MxVectorMultiply{random,iny liser,ray.endpoint);

P

VxSubluct(fonlur;el,uy.endpoint,ny.dinﬂbn);
return(trace{&ray, 0, t));

PFILE spichle;

extern struct 2y (fost 1,y;} Location]);
extern float Times])
extern float Filter[4){SS]Pd}{3)

double t0 = 0.0;
double t] = 10,

settime() sellime
0 = stoffaarp|i]);

setpplay()

setmise()

‘ 5,239,624
69 70

t1 = atof{aargv{2]);

selppfry

ppfs = atoi(sargy IP
pply = atoilaargv{2]}; -
spls == 1 4 {pplx-1)/ppm
sply = 1 + {pply-1)/pps

selssize

srise o llm(uvp[l]). .
ppr = | << mise;

epfe = 1 + (ppfe-1)/ppx

sply = 1 4+ (pply-1)/ppr;

rpp o= S5/(ppsopps);

struct sarg emd emdfe{

"

S.setppiay, .
0.velssize, .
§,5etlime, ot

-» Tod "-dr '”fx PPIy° 00,00,

Y ¢d<03>] cusize: 8, 1, 2, 370000

-t Sel SOl Cstarttime endtime® 90,00,

0,setdebug, '!-dr.“:\ug 0.0,0.0,

0,setystart, *i-y %od Sad]",*compute sample ares %id to Tod i y°,0,0.00,
0,0.(char shtd emd.0,0,0,00,

0,0,0,0,0,0,0,0

remain{arge, srgy) remain
char argvl):

vector viewdirection,updirection,f int, int;
char fbname{l28);
char label[256);
int m9y;
register struct light dptr;
veetor abe;
matrix MR MR2;

int ¢
struet color pixel|SS};

yend w= MIN(yend,eply-1);

sprintfilabel,"pray -3 5d %d -m %d -t NI W -y Tod %d
ppizpply svise A0t yotart yend);

PicSetLabel{label);

PicSetPsise(pplz.(yend-ystart+ 1) opps);

PicSetTrise(pplr{yend-yatart+1) ppsj);

PitSetPformat(PF_RGBA):

PicSetPmatting{PM _MTD)

PicSetForce(1); i

PicSetOflset{0.ystart pps);

if{{pichile mPicCreat{argy[l], 0144))meaaNULL}{
fprintf{stderr, "sphere: Can’t ereate %oo\n", argv(t]);
exiy1);

picPreEncodeScanline(pichle, OL);

[
¢ Reed seme input

-}ule((e—;ekharﬂ) 1= EOF) lw:kh(c)(
ease ° “:ease \L': ease ‘\n': eak;
eave ‘P°: do cegetechar(); while(e Tae \n &l ¢ les EOF); break;
ease [I {scanl{"CIr LAieldolview) tem §)
fprintf{stderr,"Invalid Beld of view \n'};
break;
case ‘e
f{seant(" Cor o To IO Te e ITLITa TR ",
&viewpoint[0], L viewpoint]l]. R viewpoint|2],
Elocuspnint{0]. L focuspoint}l], & focuspoint{2],
&-;ppomqol Luppoint[1],Leppoint]2]
]

fprintf(stders, *Invalid viewpeint\n®); -
_ehe

{

wppoint{3] = 1;
viewpoint{l| = 1.
focurpoint|l] = 1.
ViaSubtract(locuspoint,viewpoint,viewdirection);
focshdistance w Vilength{viewdirection)
ViSubtract{uppoint,vie wpoint updirection);

break;
case ‘3’
{scanf*GIF, Eambirnt) (s 1)
lpnnt!(!ldtn. ®lavalid ambient ﬁglll\l |3
. ...remasn
.. break;
ease ‘o':

A
double arimuth,pitch.roll:

5,239,624
71 72

T L gyt priprisnl [prlprtiordiar Al e e T ar tag Tl oaT o rd TardTon AT oy A58
Lesphere-D> eenter 0], &esphere-Dcentes]l], &Lesphere-> center|2],
&esphere-D>radius,
&azimuth, & piteh,&rol,
&esphere-> oulridecolor.red, Lesphere- S>oulsidecolor.grn, Lesphere- > outsidecolor.blu.Lespliere- > outsidecold
&esphere-> stripecolor.red,Lesphere-D atripecolor.gra, &esph D stripeeolor.biv,Zeaphere- > stripecolor.alf,
&esphere->relractiveindes, Eesphere-D tramsmitivity,
Lesphere-D> specularity, Lesphere->phong,

fbname
) 1= 2)
fprintf{stderr, *Invalid sphere\n®});

double v;

matriz tempmatrix;
FbEtrors|F BIGNORE);
it ({esphere->buniptr == FhOpen(fbname}) =e NULL)

;printflmlur.'ennﬂ open %2s\n® foname);

eke
{

esphere->fbrsize e GetXSize{esphere-D> buniptr};
: erphere->foysize == GetYSise(esphere- > bunipts);

cs1.ChannelSel o 017; Jeo ol of

esr.AutolneDec w= INCREMENT;

ear.WriteTrigger = ALPIIA TRIGGER;

esr.ReadTrigger «= RED_TRIGCER;

esr XYMod = X MOD;

esr.DumpXY = &

et WriteAddrMod = 0;

est.ReadAddiMod = 0

esr.LerpMode = ©O;

esr.LerpRequest == ©;

SetBuniCSR(esphere- > bunipte, esr);

lprintf{stdeer,”%s: %d %od\n" fonameesphere-D Mbasize,esphere-> ey sir)

BuniCSRType or;

MiRotate{azimuth,"s* esphere->M);
MzRotate(piteh ,°y " tempmatrix};
MaMultiply(esphere-> M, tempmatriz,esphere-> M);
Msflotate(toll 0" tempmatris);
MxAfultiply[esphere-> Mtempmatrix,esphere-> M);

esphere-Deenter|d) w L
esphere->mptr = 0,

esphere-> reliectiondispersion o= ©;
esphere-> transminiondispersion w 0;
esphered 4

)

Lnak;

csse "k

int spherenumber;

double rarttime;

ifscant[* Tod aITIo I,
Lepherenumber L starttime,
Labe[0].Labe]l] kabe[2]) = §)
fprintfistderr, “invalid hit\a"}; o

...rEMAIN

{

struct movement wldmptr, mewmptr;

double v;

abefd] = 15

newmptr e {struet movement ¢ mallocsizeof{struct movement)):
If {oldmptr = sphere[spherenumber].mpts)

while (oldmptr->mptr) oldmptr = oldmptr->mptr;
eldmpir->mpte = mewmptr;

elhse
sphere[spherenumberl.mptr == mewmptr;

newmplr->mptr = 0;
newmptr-D>staritime o= starttime; .
VxCopy(abe,newmptr->transiate);

sbe 1o the trandlalion weelor for the moving sphere.

Let we take o perpendicolar weetor €0 & in the oame 2 plane
end follew the formulas [rem page 256 of Newman & Spreell, ol
Jor votaling sbeut en arbilrery vector,

_ {double temp; temp = abel0); abcfo] = abelt]; abcfl] w ~temp;)

VzNormalire{=beabe);
v == syrt{{doublelabel] abe[t] + abe2] abefo)));

5,239,624
73

* Mxldentity{MRI)

}
break;
ease I

MR = MRIPI2] = abef2]/y :
MRI1]2J{t] e (MRI[I}[2] == sbefl]/v):
Maldentity(ANL2):

MR2[oj[0} = MR2I[2] = v ;

MR2|zfjo] = (MR2O][2] = sbefoj);
MxMultiply(MRIMR2. ne wmptr-> MRIMR?2}:
MRYU2UT - <MRI{1
MR w AR
MR2{2}jo] = <MR2|2}i0}:
Mijoji2] = -MR2jojj):
;lxMultiply(MR'.’,MRl.Mwm,tv-)lkiml);

3

Mlscant" SOl R I L ISR,

Eelight-> Iocation0[0], &elight-> locationd]t], &elight->location0|2]
Eelight->intensity0,

Lelight-> locationtfo], Zelight-> locationt|t], &elight-> loration12},
Lelight->intemity 1,

Lelight->radivs) te 8§}

Iprintf{siderr, *lavalid kight\n");

3

74

...remain

else
{
elight-> lorationO[3] == 1;
oli;ht—)lou!'wulm - 1
elight-Drghred
elight->rgbgrn =
elight->rgb.blu we .
elight-D1gball = 33
elight+ +;
break;
case ‘p°:
{double dummy;
H{seant(® CellCIPTRITIr & d y.kd y.&d y, &d y) tm 4)
fprintl{stderr, "lavalid phae\n"};
chlk;
ease ‘m°:
halfstripewidih w Rallringwidih = Enethickness we ©;
ringradiug == 1.01;
break;

0y,
case ¢ o

iMaeant" %I LFn) tee 1)

bresk;
case “b°:

fprintfstderr, “lavalid camers lJens\n');

if{scanf*%2d° Ldms) le 1)

fprintfistderr, *lavalid beeder\n")

fprintf{stderr, *Unrecognised command *);

do

Lle(c, stderr);
esmgetchar();

while (¢ lm EdF &k ¢ lm ‘\n'k
pute{"\n’, stderr);

printl{*%%d spheres, %od lights\n®, esphere-sphere, elight-light);

Jer (Iptr e= Eght; iptr fum elight; Iptr++)

sNormalire(lptr-> lecatien0,Ipte-> lecotion);
VeNormalizefiptr-> locationl,iptr-> locationt);
} .

fprintfistderr,"pps = T23d\n"pps};
fprintfistders *(pplr.pply) = (S634.553d\n" pplx.pply);
;prinu(udur,'(yyh.lply) - {503d,5034)\n" 9plx.sply);

CoxCamerafvicwpeint,fecuspoint, uppeint,0.);

CruCamera{dblviewpoint,dblviewdirection,dblupdirection,0.);

CruPerspective(fieldolview,1.33333),0.1,5.0);

l .
of
allocatecolotinebulfers();
i (debug)
[ooliveg
o/
CruGetN{normaliser);
Mulnvert{normalizer,inverrenormalizer);
CruViewPrint(};
Ll

CunSetSereenWindswfepfs-1.,0.,0pfy-1.,0.,255.,0.);

o/

printl{*$3d:7cd.%4.
/° Concatenate

75

CruSe ScreenWindow(0.,aplx-1.,0.,2py-1.9.,255.);

struct sphere eptr;
matrix N.P.S,T;
CruGetN(N);

CruGetP(l);

CruGetS(S); .
for (sptr T sphere; opte I, exrhere; sptes+)

veetor eenter; ! .
struct window wh,wl;
FindCenter{sptr,10 center);
MxTranslate((doublejeenter|o],
{double)center|t],
{doublejcenter|2] T);
MxMuluiply{T.N,Tk
MaMultiply{T.P,T):
MxMultiply{T S, T};*
hundrphn:(.-pu-}rdbs.'l’.&ﬂ)‘.

FindCenter{sptr L] center);
MxTranslate((double)center]o],
{double)center]l],

: (doublejeenter{2,T);
MxMuitiply(T.N.T};
MxMultiply(T,P. Tk
MxMultiply(T,S,T);
boundsphere(sptr-> radius, T,k wl});

5,239,624
76

...remain

4 (lo.m-inx > wlhminz) wh.minx o= .wlminsg;
U {wO.miny > wiminy] wO.miny e wi.miny;
it {wO.masx < wimarz) wOmaxx = wimaxs;

if (w0.mazy € wlmary) whmasy = wlmary;

. Souble deration;
strurt movement emptr;

. VzCopy(spte-> center,center);

If (mptr == sptr->mptr)

while (mptr->mptr)

If ((W < mpu-Dstarttime) 22 (11 > mpLr->starttime))

MaTranstate({doublelrente:[0],
[double)eenterft},
(dcuble)tuullﬂ LT);

MaMultiply(T.N.T):

MaMultiply(T.P.T);

MaMultiply(T S, T}

boundsphere(sptr->radiug, T Lwl);

it (xO.mint > wlminx) w0minz w wiming

If {(»0.miny > wiminy) wOminy w= wl miny,
it {(w0.maxx € whmars) sOmaxe = sl masy,
if (w0.may € whmary) wOmayy e al.masy,

duration == mptr->mptr-Dstaettime - mpir->starttime;
Vl.AddL"p(duralien.nntn.mpu—>lumlalt.¢rnl¢r):
mptr w= mptr->mpte;

(10 < mpu-Detarttime) &£& {11 > mpu-}nmlimc))
MaTranslate({doubleleenter]o],

doublejeenter]t],
double)eenter{2].T);

MaMultiply[T.N.T);
MaMultiply(T.P. Tk
MaMultiply(T .S, Th

...remain

boundsphere(sptr-> radius, T, L w1);

¥ (wO.minx > wlmini) wO.minx = wi.ming;
if {xO.miny > wi.miny) wO.miny = wiminy;

i (»0maxs € wlmart) wO.mats e wimasy;
;r {»0.maxy < wl.maxy} wl.maxy e wimaxy;

)

ptr-D>w w wh;

d,%d\n'.sptr.ypb-)v.niu.spu->v.muuplr~>-.uin,,apu->-.m;‘,);
sl of the ewrrent matrccs the! affect the aphere,
® Let T be the concotensted matriz that trensforme the ophere Jrom

5,239,624 .
77 78
¢ model space to object spuce (emsz) to eye apace (Newbl) te oscreen
; epsce (NeDS).

)
for (sy = yatart-l; sy <= yead+l; sy+4}

¥ {debug) ’ '
© {tprintfiatders,” 283d\r",sy)iMush(stdout);)
eyclecolorlinebuBersit, .
if (yactivespheresisy)}
for (sx == 0; 5z < wplx: sxé4)
i (sysctivespheresisx,oy)}
Int w; -
int timeofimt;
i (debug)
{Iprintfistderr,” Ca3d\¢® ax):Mush{stdout]);) -
timeofiset == 6 + 9y g; ’
for {ss = % . < S5; m+4)

pielfssjmmeyetrace]
2 {sx+Lecationfss]. x+drand(} /SS1 frpta - 1,
- 1 = 2ory+Location|m] y+drandl) /SS) feply,
0 4 (0110} {Times{ss+timeoflaet) ¢SS+ drand{) /SS1);

accumelateSS{pixel ox pps};

it ((lewr ystart-1) E& (sy le= yend41))
wiritecolotlinebullers();

}
it (IpicPurtEncodeSeantine{pichile))

printf(“sphere: trouble writing tike in Sos\n®, argv[i]);
;’icClost(pitﬁle);

RCBADPizelType GDAline;

struct tolor escclorlineptr; . .
writecolorlinebuffers) wrilecolorlincbuffers
{

int i
for (i = 0, § < pps; i++)

eonverttsRGUAline {cnlorfine ptrfi) 4 2%
‘itEntodeSunlm(picﬁk.RGUMiM);

slloestecolorlinebuflers{) allocatecolorlinebuffers
«..sllocalecolorlineduffers

{
int :
RGBAline w (RCOAPixelType sjmalloc({unsigned)sireo{RGDAPixe!Type) mppta);
colorlineptr e (struct color semalioc/{unsignedsiseof{struct color o {pps+2)};
for (i = 0; i < pps+2; i++4)
eolorlineptei] == {sirwct color #)malloc{{unsignedisizenl{struct color) {pps xplx+2));

. qtkcolmlinzbuﬂcn() cyclecolorlinebuffers

nt L
struct color semp0, sempl;
struct color «olorptr;

temp0 o= colorlineptr{pps];
templ = colorline prrpps+1);
for (i w= ppstl; | > 2 i)

eolorptr = tolodimp!rﬂ = eolorlineptrfi-2f; -

for (i = pprouplzs2: j > 0 j—)
1 ’+ - 91 ()

4

......;..‘,‘.h R

colotlineptel] = templ;

} E
converttoRGDAline(colorlineptr) . : converlloRGDAline
struct color svolotlineptr; . . .

{ .
. RGRATixelType RGBAlineptr;
nt x; = :
for (x == ORGBAlineptr = RGBAline; 3 < ppis; 24+ RCDAineptr+ +,colotlinepte+ 4}

RCBAlinepti->Red aspviXceolorfinepte->red);
RCDAlineptr->Greenwpri2{colorlinepti-> gra)
RGDAlineptr->Blue smpvi2(eolorlineple-> bluj;
?GD.\Iineplr-)A.lph—pvl‘l(eokrlineytr-)-ll');

lnttivupht!n(u.q) zyaclivespheres

LA

. 5,239,624 .
79 80

struct sphere op;

int flag;

flag = O;

for(p=sphere;p lee espherept +)

flag =

p-Dactive =
{{isz2 D= p=-Dwminz-dms} L& (52 <wm p-D>wmazzédms)) &L
{(sy >= p->w.miny-dmi} &k (55 <= p-Dw.mauzrytdmi});

Jeprintf f:l:%l\u',r,y'-> sctive);of

return{fiag);
yactivespheres{sy) yarlit'esph cres
stried sphere op;
int flag;
flag = O
for(p=sphere;p lm esphereip4 4)
fisg |=
p-Dactive = ({57 D p->wminy-dmi) L& (ry <= p-D>wmazy+dmi));
...yaclivespheres
Joprinti(C Sed:S\n" 0,0~ D> sctive); o]
veturn{fiag);
The active flag sndicates that the ophere tomches thie scankine.
This con be anowered by intersccting the plane determined by the
.peint of eiew with the scanline with the ophere. Actuelly, of
eouroe, the plame is 84, ene scankime Aigh; the ophere o0 §d,
moving a0 it dees throngh lime.
A simple apprezimetion to reduce the plese back down to 24 iv
to interecet &8 wilh o sphere larger in redine by onc cestre
ocanline.
Furthermore, the moeing aplhere can be neglected by wiing the
everage of lhe two sphere cemtere, with o radive increascd by
helf the differemce.
ol
) }
sccumulateSS(pSSptr.x) accumulaleSS
struct eolor epSSpir;
int =
fnt ijkim;
flost lptr;
float I;

#truct color =olorptr;

s == O
for(i-"-i<rpr. j+4)
‘ for (i = & i < pps; i+4)

for (l-rpmk)’;l—) R

int zoffset yoflset;

fpe = RFilter[ssize]jss]jo]io];
2005t e Location[ssl.x spps;
yoflset == Locstionjss).y spps;
for (m «= 0, m < 3; mé4)

colorptr s colorlineptriyofiset+m]+ soflsersx;
for (| = 0,1 < 3; I+4)

{ = dptees;

colorptr->red 4= pSSptr-Dred 4;
eolorptr-Dgrn 4ae pSSptr->gen of;
colorpti-Dbiv 4= pSSpue-Sblud:
colorptr->alf 4w pSSptr-Dall o;
;olorpu'&ﬂ

)
;SSpu«H»; it

}

main{arge, argy)) main
char argvl}: :

srge == dn aargs{emd.argenrgy);
it (sa_helpflag) exin(0);
it (arge < 2
{print!("Usage: gt Rlename\n")esit{1};}

;emain(n‘g, srgv);) «.main

5,239,624

81

It is claimed:

1. In a metliod of forming an image frame that indi-
vidually specifies the characteristic information of each
pixel of an array of pixels that forms said frame, wherein
objects to be included in said image frame are repre-
sented by data stored in a computer data base that speci-
fies visual characteristics of said objects for said image

frame, a method of accessing the information of the
computer data base for determining the characteristic
information of each pixel, comprising performance of
the following steps:

spatially dividing the area of said pixel into a plurality

of non-overlapping areas;

20

25

30

35

45

50

55

65

82

pseudo-randomly positioning a sample point within
substantially each of said areas, thereby to deter-
mine the pseudo random position of a plurality of
sample points for each pixel;

determining from the computer data base the charac-
teristic information of said objects at each of the
plurality of pseudo random sample points for each
pixel of said frame;

combining the characteristic information of the sam-
ples in each pixel, thereby to determine a single
characteristic information of each pixel, and;

constraining said positioning of said sample point
such that a Fourier transform over a distribution of
said sample points over an infinite extent contains

substantially continuous regions.
* * % * %

